Fundamentals: Table of Contents

Fundamentals of Data Structures

by Ellis Horowitz and Sartaj Sahni

PREFACE

CHAPTER 1: INTRODUCTION

CHAPTER 2: ARRAYS

CHAPTER 3: STACKS AND QUEUES

CHAPTER 4: LINKED LISTS

CHAPTER 5: TREES

CHAPTER 6: GRAPHS

CHAPTER 7: INTERNAL SORTING

CHAPTER 8: EXTERNAL SORTING

CHAPTER 9: SYMBOL TABLES

CHAPTER 10: FILES

APPENDIX A: SPARKS

APPENDIX B: ETHICAL CODE IN INFORMATION PROCESSING

APPENDIX C: ALGORITHM INDEX BY CHAPTER

www.itdevelopteam.com

file:///C)/E%20Drive%20Data/My%20Books/Algorithm/DrDobbs_Books Algorithms_Collection2ed/books/book1/toc.htm7/3/2004 3:56:06 PM


www.itdevelopteam.com

Fundamentals: PREFACE www.itdevelopteam.com

H b

PREFACE

For many years a data structures course has been taught in computer science programs. Often it is
regarded as a central course of the curriculum. It isfascinating and instructive to trace the history of how
the subject matter for this course has changed. Back in the middle1960's the course was not entitled Data
Structures but perhaps List Processing Languages. The magjor subjects were systems such as SLIP (by J.
Weizenbaum), IPL-V (by A. Newell, C. Shaw, and H. Simon), LISP 1.5 (by J. McCarthy) and SNOBOL
(by D. Farber, R. Griswold, and |. Polonsky). Then, in 1968, volume | of the Art of Computer
Programming by D. Knuth appeared. His thesis was that list processing was not a magical thing that
could only be accomplished within a specially designed system. Instead, he argued that the same
techniques could be carried out in almost any language and he shifted the emphasis to efficient
algorithm design. SLIP and IPL-V faded from the scene, while LI1SP and SNOBOL moved to the
programming languages course. The new strategy was to explicitly construct a representation (such as
linked lists) within a set of consecutive storage |ocations and to describe the algorithms by using English
plus assembly language.

Progressin the study of data structures and algorithm design has continued. Out of this recent work has
come many good ideas which we believe should be presented to students of computer science. It isour
purpose in writing this book to emphasi ze those trends which we see as especially valuable and long
lasting.

The most important of these new conceptsis the need to distinguish between the specification of a data
structure and its realization within an available programming language. This distinction has been mostly
blurred in previous books where the primary emphasis has either been on a programming language or on
representational techniques. Our attempt here has been to separate out the specification of the data
structure from its realization and to show how both of these processes can be successfully accomplished.
The specification stage requires one to concentrate on describing the functioning of the data structure
without concern for its implementation. This can be done using English and mathematical notation, but
here we introduce a programming notation called axioms. The resulting implementation independent
specifications valuable in two ways: (i) to help prove that a program which uses this data structure is
correct and (ii) to prove that a particular implementation of the data structure is correct. To describe a
data structure in arepresentation independent way one needs a syntax. This can be seen at the end of
section 1.1 where we also precisely define the notions of data object and data structure.

Thisbook also seeks to teach the art of analyzing algorithms but not at the cost of undue mathematical
sophistication. The value of an implementation ultimately relies on its resource utilization: time and
space. Thisimplies that the student needs to be capable of analyzing these factors. A great many
analyses have appeared in the literature, yet from our perspective most students don't attempt to
rigorously analyze their programs. The data structures course comes at an opportune timein their
training to advance and promote these ideas. For every algorithm that is given here we supply asimple,
yet rigorous worst case analysis of its behavior. In some cases the average computing timeis also
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The growth of data base systems has put a new requirement on data structures courses, namely to cover
the organization of large files. Also, many instructors like to treat sorting and searching because of the
richness of its examples of data structures and its practical application. The choice of our later chapters
reflects this growing interest.

One especially important consideration is the choice of an algorithm description language. Such a choice
Is often complicated by the practical matters of student background and language availability. Our
decision was to use a syntax which is particularly closeto ALGOL, but not to restrict ourselvesto a
specific language. This gives us the ability to write very readable programs but at the same time we are
not tied to the idiosyncracies of afixed language. Wherever it seemed advisable we interspersed English
descriptions so as not to obscure the main pointof an algorithm. For people who have not been exposed
to the IF-THEN-ELSE, WHILE, REPEAT- UNTIL and afew other basic statements, section 1.2 defines
their semantics viaflowcharts. For those who have only FORTRAN available, the algorithms are
directly trandlatable by the rules given in the appendix and a translator can be obtained (see appendix A).
On the other hand, we have resisted the temptation to use language features which automatically provide
sophisticated data structuring facilities. We have done so on several grounds. One reason is the need to
commit oneself to a syntax which makes the book especially hard to read by those as yet uninitiated.
Even more importantly, these automatic featules cover up the implementation detail whose mastery
remains a cornerstone of the course.

The basic audience for this book is either the computer science major with at least one year of courses or
a beginning graduate student with prior training in afield other than computer science. This book
contains more than one semester's worth of material and several of its chapters may be skipped without
harm. The following are two scenarios which may help in deciding what chapters should be covered.

The first author has used this book with sophomores who have had one semester of PL/I and one
semester of assembly language. He would cover chapters one through five skipping sections 2.2, 2.3,
3.2,4.7,4.11, and 5.8. Then, in whatever time was left chapter seven on sorting was covered. The
second author has taught the material to juniors who have had one quarter of FORTRAN or PASCAL
and two quarters of introductory courses which themselves contain a potpourri of topics. In the first
guarter's data structure course, chapters one through three are lightly covered and chapters four through
six are completely covered. The second quarter starts with chapter seven which provides an excellent
survey of the techniques which were covered in the previous quarter. Then the material on external
sorting, symbol tables and filesis sufficient for the remaining time. Note that the material in chapter 2 is
largely mathematical and can be skipped without harm.

The paradigm of class presentation that we have used is to begin each new topic with a problem, usually
chosen from the computer science arena. Once defined, a high level design of its solution is made and
each data structure is axiomatically specified. A tentative analysis is done to determine which operations
are critical. Implementations of the data structures are then given followed by an attempt at verifying
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that the representation and specifications are consistent. The finishedalgorithm in the book is examined
followed by an argument concerning its correctness. Then an analysisis done by determining the
relevant parameters and applying some straightforward rules to obtain the correct computing time
formula

In summary, as instructors we have tried to emphasi ze the following notions to our students: (i) the
ability to define at a sufficiently high level of abstraction the data structures and algorithms that are
needed; (ii) the ability to devise alternative implementations of a data structure; (iii) the ability to
synthesize a correct algorithm; and (iv) the abilityto analyze the computing time of the resultant
program. In addition there are two underlying currents which, though not explicitly emphasized are
covered throughout. Thefirst is the notion of writing nicely structured programs. For all of the programs
contained herein we have tried our best to structure them appropriately. We hope that by reading
programs with good style the students will pick up good writing habits. A nudge on the instructor's part
will also prove useful. The second current is the choice of examples. We have tried to use those
examples which prove a point well, have application to computer programming, and exhibit some of the
brightest accomplishments in computer science.

At the close of each chapter thereisalist of references and selected readings. These are not meant to be
exhaustive. They are a subset of those books and papers that we found to be the most useful. Otherwise,
they are either historically significant or develop the material in the text somewhat further.

Many people have contributed their time and energy to improve this book. For thiswe would like to
thank them. We wish to thank Arvind [sic], T. Gonzalez, L. Landweber, J. Misra, and D. Wilczynski,
who used the book in their own classes and gave us detailed reactions. Thanks are also dueto A.
Agrawal, M. Cohen, A. Howells, R. Istre, D. Ledbetter, D. Musser and to our studentsin CS 202, CSci
5121 and 5122 who provided many insights. For administrative and secretarial help we thank M. Eul, G.
Lum, J. Matheson, S. Moody, K. Pendleton, and L. Templet. To the referees for their pungent yet
favorable comments we thank S. Gerhart, T. Standish, and J. Ullman. Finally, we would like to thank
our ingtitutions, the University of Southern Californiaand the University of Minnesota, for encouraging
in every way our efforts to produce this book.

Ellis Horowitz
Sartg) Sahni
Preface to the Ninth Printing

We would like to acknowledge collectively all of the individuals who have sent us comments and
corrections since the book first appeared. For this printing we have made many corrections and
improvements.

October 198l

file:///C)/[E%20Drive%20Data/My%20Books/Algorithm/DrDob...Books_Algorithms_Collection2ed/books/book 1/preface.htm (3 of 4)7/3/2004 3:56:18 PM


www.itdevelopteam.com

Fundamentals: PREFACE www.itdevelopteam.com

Ellis Horowitz

Sartg] Sahni

file:/lIC{/E%20Drive%20Data/My%20Books/Algorithm/DrDab...Books_Algorithms_Collection2ed/books/book 1/preface.htm (4 of 4)7/3/2004 3:56:18 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 1: INTRODUCTION WWW. itdevelopteam.com

« m )
CHAPTER 1: INTRODUCTION

1.1 OVERVIEW

Thefield of computer scienceis so new that one feels obliged to furnish a definition before proceeding
with this book. One often quoted definition views computer science as the study of algorithms. This
study encompasses four distinct areas:

(i) machines for executing algorithms--this area includes everything from the smallest pocket calculator
to the largest general purpose digital computer. The goal isto study various forms of machine
fabrication and organization so that algorithms can be effectively carried out.

(i1) languages for describing algorithms--these languages can be placed on a continuum. At one end are
the languages which are closest to the physical machine and at the other end are languages designed for
sophisticated problem solving. One often distinguishes between two phases of this area: |language design
and trandation. The first calls for methods for specifying the syntax and semantics of alanguage. The
second requires a means for trandlation into a more basic set of commands.

(ii1) foundations of algorithms--here people ask and try to answer such questions as. is a particular task
accomplishable by a computing device; or what is the minimum number of operations necessary for any
algorithm which performs a certain function? Abstract models of computers are devised so that these
properties can be studied.

(iv) analysis of algorithms--whenever an algorithm can be specified it makes sense to wonder about its
behavior. Thiswasrealized as far back as 1830 by Charles Babbage, the father of computers. An
algorithm's behavior pattern or performance profile is measured in terms of the computing time and
space that are consumed while the algorithm is processing. Questions such as the worst and average time
and how often they occur are typical.

We see that in this definition of computer science, "algorithm™ is afundamental notion. Thus it deserves
aprecise definition. The dictionary's definition "any mechanical or recursive computational procedure”
Is not entirely satisfying since these terms are not basic enough.

Definition: An algorithmisafinite set of instructions which, if followed, accomplish a particular task.
In addition every algorithm must satisfy the following criteria:

(i) input: there are zero or more quantities which are externally supplied;

(i) output: at least one quantity is produced;
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(iii) definiteness: each instruction must be clear and unambiguous;

(iv) finiteness: if we trace out the instructions of an algorithm, then for all cases the algorithm will
terminate after a finite number of steps;

(v) effectiveness. every instruction must be sufficiently basic that it can in principle be carried out by a
person using only pencil and paper. It is not enough that each operation be definite asin (iii), but it must
also befeasible.

In formal computer science, one distinguishes between an algorithm, and a program. A program does
not necessarily satisfy condition (iv). One important example of such a program for acomputer isits
operating system which never terminates (except for system crashes) but continues in await loop until
more jobs are entered. In this book we will deal strictly with programs that always terminate. Hence, we
will use these terms interchangeably.

An algorithm can be described in many ways. A natural language such as English can be used but we
must be very careful that the resulting instructions are definite (condition iii). An improvement over
English isto couple its use with a graphical form of notation such as flowcharts. This form places each
processing step in a"box" and uses arrows to indicate the next step. Different shaped boxes stand for
different kinds of operations. All this can be seen in figure 1.1 where aflowchart is given for obtaining a
Coca-Cola from a vending machine. The point is that algorithms can be devised for many common
activities.

Have you studied the flowchart? Then you probably have realized that it isn't an algorithm at all! Which
properties does it lack?

Returning to our earlier definition of computer science, we find it extremely unsatisfying asit gives us
no insight as to why the computer is revolutionizing our society nor why it has made us re-examine
certain basic assumptions about our own role in the universe. While this may be an unrealistic demand
on adefinition even from atechnical point of view it is unsatisfying. The definition places great
emphasis on the concept of algorithm, but never mentions the word "data’. If acomputer is merely a
means to an end, then the means may be an algorithm but the end is the transformation of data. That is
why we often hear a computer referred to as a data processing machine. Raw dataisinput and
algorithms are used to transform it into refined data. So, instead of saying that computer scienceisthe
study of algorithms, alternatively, we might say that computer science is the study of data:

(i) machines that hold data;
(i) languages for describing data manipulation;

(iii) foundations which describe what kinds of refined data can be produced from raw data;
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(iv) structures for representing data.

[]

Figure 1.1: Flowchart for obtaining a Coca-Cola

There is an intimate connection between the structuring of data, and the synthesis of algorithms. In fact,
a data structure and an algorithm should be thought of as a unit, neither one making sense without the
other. For instance, suppose we have alist of n pairs of names and phone numbers (a;,b4)(ay,by), ..., (&,

bn), and we want to write a program which when given any name, prints that person's phone number.

Thistask is called searching. Just how we would write such an algorithm critically depends upon how
the names and phone numbers are stored or structured. One agorithm might just forge ahead and
examine names, a;,a,,ag, ... €tc., until the correct name was found. This might be fine in Oshkosh, but in

Los Angeles, with hundreds of thousands of names, it would not be practical. If, however, we knew that
the data was structured so that the names were in a phabetical order, then we could do much better. We
could make up a second list which told us for each letter in the aphabet, where the first name with that
letter appeared. For a name beginning with, say, S we would avoid having to look at names beginning
with other letters. So because of this new structure, avery different algorithm is possible. Other ideas for
algorithms become possible when we realize that we can organize the data as we wish. We will discuss
many more searching strategies in Chapters 7 and 9.

Therefore, computer science can be defined as the study of data, its representation and transformation by
adigital computer. The goal of this book isto explore many different kinds of data objects. For each
object, we consider the class of operations to be performed and then the way to represent this object so
that these operations may be efficiently carried out. Thisimplies a mastery of two techniques: the ability
to devise aternative forms of data representation, and the ability to analyze the algorithm which operates
on that structure . The pedagogical style we have chosen isto consider problems which have arisen often
in computer applications. For each problem we will specify the data object or objects and what isto be
accomplished. After we have decided upon arepresentation of the objects, we will give acomplete
algorithm and analyze its computing time. After reading through several of these examples you should
be confident enough to try one on your own.

There are several terms we need to define carefully before we proceed. These include data structure,
data object, data type and data representation. These four terms have no standard meaning in computer
science circles, and they are often used interchangeably.

A data type is aterm which refersto the kinds of data that variables may "hold" in a programming
language. In FORTRAN the datatypes are INTEGER, REAL, LOGICAL, COMPLEX, and DOUBLE
PRECISION. In PL/I thereis the datatype CHARACTER. The fundamental datatype of SNOBOL is
the character string and in LISP it isthelist (or S-expression). With every programming language there
isaset of built-in datatypes. This means that the language allows variables to name data of that type and
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provides a set of operations which meaningfully manipulates these variables. Some data types are easy
to provide because they are already built into the computer's machine language instruction set. Integer
and real arithmetic are examples of this. Other data types require considerably more effort to implement.
In some languages, there are features which alow one to construct combinations of the built-in types. In
COBOL and PL/I thisfeatureis called a STRUCTURE whilein PASCAL it iscalled aRECORD.
However, it is not necessary to have such a mechanism. All of the data structures we will see here can be
reasonably built within a conventional programming language.

Data object isaterm referring to a set of elements, say D. For example the data object integers refers to
D ={0, £1, £2, ...} . The data object alphabetic character strings of length less than thirty one implies D
={"'A'B, ..,'Z'AA, ..}. Thus, D may befinite or infinite and if D isvery large we may need to devise
special ways of representing its elementsin our computer.

The notion of a data structure as distinguished from a data object is that we want to describe not only the
set of objects, but the way they are related. Saying this another way, we want to describe the set of
operations which may legally be applied to elements of the data object. This implies that we must
specify the set of operations and show how they work. For integers we would have the arithmetic
operations +, -, *, / and perhaps many others such as mod, ceil, floor, greater than, less than, etc. The
data object integers plus a description of how +, -, *, /, etc. behave constitutes a data structure definition.

To be more precise lets examine a modest example. Suppose we want to define the data structure natural
number (abbreviated natno) where natno = {0,1,2,3, ...} with the three operations being atest for zero
addition and equality. The following notation can be used:

structure NATNO

1 decl are ZERQ( ) D nat no

2 | SZERQ( nat no) D bool ean

3 SUCC( nat no) D nat no

4 ADD( nat no, nat no) D nat no

5 EQ(nat no, natno) D bool ean

6 for all x, y € natno |et

7 | SZEROQ(ZERO) ::= true; | SZERQ(SUCC(x)) ::= false
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8 ADD( ZERO, y) :: =y, ADD(SUCC(x), y) :: =

SUCC( ADI( x, Y))

9 EQx, ZERO) :: = if ISZERO(X) then true el se false
10 EQ(ZERO, SUCC(y)) :: = false

EQUSUCC(x), SUCC(y)) :: = EQX, )

11 end

end NATNO

In the declare statement five functions are defined by giving their names, inputs and outputs. ZERO isa
constant function which means it takes no input arguments and its result is the natural number zero,
written as ZERO. ISZERO is a boolean function whose result is either true or false. SUCC stands for
successor. Using ZERO and SUCC we can define all of the natural numbers as: ZERO, | = SUCC
(ZERO), 2 = SUCC(SUCC(ZEROQ)), 3 = SUCC(SUCC(SUCC(ZERQ))), ... etc. Theruleson line 8 tell
us exactly how the addition operation works. For example if we wanted to add two and three we would
get the following sequence of expressions:

ADD(SUCC(SUCC(ZERO)),SUCC(SUCC(SUCC(ZERQ))))
which, by line 8 equals
SUCC(ADD(SUCC(ZERO),SUCC(SUCC(SUCC(ZERO)))))
which, by line 8 equals
SUCC(SUCC(ADD(ZERO,SUCC(SUCC(SUCC(ZERO))))))
which by line 8 equals
SUCC(SUCC(SUCC(SUCC(SUCC(ZERO)))))

Of course, thisis not the way to implement addition. In practice we use bit strings which is a data
structure that is usually provided on our computers. But however the ADD operation is implemented, it
must obey these rules. Hopefully, this motivates the following definition.

Definition: A data structureisaset of domai nsD, adesignated domain D aset of functionsD and a
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set of axioms D ThetripIeD denotes the data structure d and it will usually be abbreviated by writing
d.

In the previous example

[]

The set of axioms describes the semantics of the operations. The form in which we choose to write the
axioms isimportant. Our goal here isto write the axioms in a representation independent way. Then, we
discuss ways of implementing the functions using a conventional programming language.

An implementation of a data structure d is a mapping from d to a set of other data structurese. This
mapping specifies how every object of d isto be represented by the objects of e. Secondly, it requires
that every function of d must be written using the functions of the implementing data structures e. Thus
we say that integers are represented by bit strings, boolean is represented by zero and one, an array is
represented by a set of consecutive words in memory.

In current parlance the tripIeD isreferred to as an abstract data type. It is called abstract precisely
because the axioms do not imply aform of representation. Another way of viewing the implementation
of adata structureisthat it isthe process of refining an abstract data type until al of the operations are
expressible in terms of directly executable functions. But at the first stage a data structure should be
designed so that we know what it does, but not necessarily how it will do it. Thisdivision of tasks, called
specification and implementation, is useful because it helps to control the complexity of the entire
process.

1.2 SPARKS

The choice of an algorithm description language must be carefully made because it plays such an
important role throughout the book. We might begin by considering using some existing language; some
names which come immediately to mind are ALGOL, ALGOL-W, APL, COBOL, FORTRAN, LISP,
PASCAL, PL/I, SNOBOL.

Though some of these are more preferable than others, the choice of a specific language leaves us with
many difficulties. First of all, we wish to be able to write our algorithms without dwelling on the
idiosyncracies of a given language. Secondly, some languages have already provided the mechanisms
we wish to discuss. Thus we would have to make pretense to build up a capability which already exists.
Finally, each language has its followers and its detractors. We would rather not have any individual rule
us out ssimply because he did not know or, more particularly, disliked to use the language X.

Furthermore it is not really necessary to write programs in alanguage for which a compiler exists.
Instead we choose to use alanguage which is tailored to describing the algorithms we want to write.
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Using it we will not have to define many aspects of alanguage that we will never use here. Most
importantly, the language we use will be close enough to many of the languages mentioned before so
that a hand tranglation will be relatively easy to accomplish. Moreover, one can easily program a
translator using some existing, but more primitive higher level language as the output (see Appendix A).
We call our language SPARKS. Figure 1.2 shows how a SPARKS program could be executed on any
machine.

Figure 1.2: Translation of SPARKS

Many language designers choose a name which is an acronym. But SPARK S was not devised in that
way; it just appeared one day as Athena sprang from the head of Zeus. Nevertheless, computerniks stil|
try to attach a meaning. Several cute ideas have been suggested, such as

Structured Programming: A Reasonably K omplete Set
or
Smart Programmers Are Required To Know SPARKS.

SPARKS contains facilities to manipul ate numbers, boolean values and characters. The way to assign
valuesis by the assignment statement

variabIeD expression.

In addition to the assignment statement, SPARKS includes statements for conditional testing, iteration,
Input-output, etc. Severa such statements can be combined on asingle line if they are separated by a
semi-colon. Expressions can be either arithmetic, boolean or of character type. In the boolean case there
can be only one of two values,

true or false.
In order to produce these values, the logical operators
and, or, not

are provided, plusthe relational operators

[]
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A conditional statement has the form

i f cond then S; i f cond then S;

or

else S,

where cond is a boolean expression and S;, S, are arbitrary groups of SPARKS statements. If S; or S,

contains more than one statement, these will be enclosed in square brackets. Brackets must be used to
show how each else corresponds to oneif. The meaning of this statement is given by the flow charts:

[]

We will assume that conditional expressions are evaluated in "short circuit" mode; given the boolean
expression (condl or cond?2), if condl istrue then cond2 is not evaluated; or, given (condl and cond2), if
condl is false then cond2 is not evaluated.

To accomplish iteration, several statements are available. One of themis
whi l e cond do

S

end

where cond is as before, Sisas S; before and the meaning is given by

[]

It iswell known that all "proper” programs can be written using only the assignment, conditional and
while statements. This result was obtained by Bohm and Jacopini. Though thisis very interesting from a
theoretical viewpoint, we should not take it to mean that thisis the way to program. On the contrary, the
more expressive our languages are, the more we can accomplish easily. So we will provide other
statements such as a second iteration statement, the r epeat-until,

r epeat

S
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until cond
which has the meaning

[]

In contrast to the while statement, the r epeat-until guarantees that the statements of Swill be executed
at least once. Another iteration statement is

| oop

S

forever

which has the meaning

[]

As it stands, this describes an infinite loop! However, we assume that this statement is used in
conjunction with some test within Swhich will cause an exit. One way of exiting such aloop is by using
a

goto label

statement which transfers control to "label." Label may be anywhere in the procedure. A more restricted
form of the go to isthe command

exit

which will cause atransfer of control to the first statement after the innermost loop which containsit.
This looping statement may be awhile, repeat, for or aloop-forever. exit can be used either
conditionally or unconditionally, for instance

| oop

S1

I f cond then exit
S;
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f orever

which will execute as

[]

The last statement for iteration is called the for -loop, which has the form

for vble D start to finish by increnment do
S
end

Vbleisavariable, while start, finish and increment are arithmetic expressions. A variable or a constant
isasimple form of an expression. The clause "by increment” is optional and taken as +1 if it does not
occur. We can write the meaning of this statement in SPARKS as

vbIeDstart

tin L finish

I ncr Dincrerrent

while (vble - fin) * incr =0 do

S

vbl el_Vble + incr
end

Another statement within SPARKS is the case, which alows one to distinguish easily between several
alternatives without using multiple if-then-else statements. It has the form

[]

wherethe §, 1<i =n+ 1 are groups of SPARKS statements. The semanticsis easily described by the
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following flowchart:
The else clauseis optional.
A complete SPARKS procedure has the form

procedure NAME (paraneter |ist)

S

end

A procedure can be used as a function by using the statement

return (expr)

where the value of expr is delivered as the value of the procedure. The expr may be omitted in which

case areturn is made to the calling procedure. The execution of an end at the end of procedure impliesa
return. A procedure may be invoked by using a call statement

call NAME (parameter list)

Procedures may call themselves, direct recursion, or there may be a sequence resulting in indirect
recursion. Though recursion often carries with it a severe penalty at execution time, it remains all
elegant way to describe many computing processes. This penalty will not deter us from using recursion.
Many such programs are easily translatable so that the recursion is removed and efficiency achieved.

A complete SPARKS program is a collection of one or more procedures, the first one taken as the main
program. All procedures are treated as external, which means that the only means for communication
between them is via parameters. This may be somewhat restrictive in practice, but for the purpose of
exposition it helpsto list al variables explicitly, as either local or parameter. The association of actual to
formal parameters will be handled using the call by reference rule. This meansthat at run time the
address of each parameter is passed to the called procedure. Parameters which are constants or val ues of
expressions are stored into internally generated words whose addresses are then passed to the procedure.

For input/output we assume the existence of two functions

read (argument list), print (argument list)
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Arguments may be variables or quoted strings. We avoid the problem of defining a"format" statement
aswe will need only the ssmplest form of input and outpui.

The command stop halts execution of the currently executing procedure. Comments may appear
anywhere on aline enclosed by double slashes, e.g.

/lthisis a comment//
Finally, we note that multi-dimensional arrays are available with arbitrary integer lower and upper
bounds. An n-dimensional array A with lower and upper bounds|;, u;, 1 =i = n may be declared by

using the syntax declare A(l:uq, ...,I5:U,). We have avoided introducing the record or structure concept.

These are often useful features and when available they should be used. However, we will persistin
building up a structure from the more elementary array concept. Finally, we emphasize that all of our
variables are assumed to be of type INTEGER unless stated otherwise.

Since most of the SPARKS programs will be read many more times than they will be executed, we have
tried to make the code readable. Thisis agoa which should be aimed at by everyone who writes
programs. The SPARKS language is rich enough so that one can create a good |ooking program by
applying some simplerules of style.

(i) Every procedure should carefully specify its input and output variables.
(it) The meaning of variables should be defined.

(iii) The flow of the program should generally be forward except for normal looping or unavoidable
Instances.

(iv) Indentation rules should be established and followed so that computational units of program text can
more easily be identified.

(v) Documentation should be short, but meaningful. Avoid sentences like "i isincreased by one."
(vi) Use subroutines where appropriate.

See the book The Elements of Programming Style by Kernighan and Plauger for more examples of good
rules of programming.

1.3 HOW TO CREATE PROGRAMS

Now that you have moved beyond the first course in computer science, you should be capable of
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developing your programs using something better than the seat-of -the-pants method. This method uses
the philosophy: write something down and then try to get it working. Surprisingly, this method isin
wide use today, with the result that an average programmer on an average job turns out only between
five to ten lines of correct code per day. We hope your productivity will be greater. But to improve
requires that you apply some discipline to the process of creating programs. To understand this process
better, we consider it as broken up into five phases: requirements, design, analysis, coding, and
verification.

(i) Requirements. Make sure you understand the information you are given (the input) and what results
you are to produce (the output). Try to write down a rigorous description of the input and output which
covers al cases,

Y ou are now ready to proceed to the design phase. Designing an algorithm is a task which can be done
independently of the programming language you eventually plan to use. In fact, thisis desirable because
it means you can postpone questions concerning how to represent your data and what a particular
statement looks like and concentrate on the order of processing.

(it) Design. You may have severa data objects (such as a maze, a polynomial, or alist of names). For
each object there will be some basic operations to perform on it (such as print the maze, add two
polynomials, or find a name in the list). Assume that these operations already exist in the form of
procedures and write an algorithm which solves the problem according to the requirements. Use a
notation which is natural to the way you wish to describe the order of processing.

(iii) Analysis. Can you think of another algorithm? If so, write it down. Next, try to compare these two
methods. It may already be possible to tell if one will be more desirable than the other. If you can't
distinguish between the two, choose one to work on for now and we will return to the second version
later.

(iv) Refinement and coding. Y ou must now choose representations for your data objects (amaze asa
two dimensional array of zeros and ones, a polynomial as a one dimensional array of degree and
coefficients, alist of names possibly as an array) and write algorithms for each of the operations on these
objects. The order in which you do this may be crucial, because once you choose a representation, the
resulting algorithms may be inefficient. Modern pedagogy suggests that all processing whichis
independent of the data representation be written out first. By postponing the choice of how the datais
stored we can try to isolate what operations depend upon the choice of data representation. Y ou should
consider alternatives, note them down and review them later. Finally you produce a complete version of
your first program.

It is often at this point that one realizes that a much better program could have been built. Perhaps you
should have chosen the second design alternative or perhaps you have spoken to afriend who has done it
better. This happens to industrial programmers aswell. If you have been careful about keeping track of
your previous work it may not be too difficult to make changes. One of the criteria of agood designis
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that it can absorb changesrelatively easily. It is usually hard to decide whether to sacrifice thisfirst
attempt and begin again or just continue to get the first version working. Different situations call for
different decisions, but we suggest you eliminate the idea of working on both at the same time. If you do
decide to scrap your work and begin again, you can take comfort in the fact that it will probably be
easier the second time. In fact you may save as much debugging time later on by doing a new version
now. Thisis a phenomenon which has been observed in practice.

The graph in figure 1.3 shows the time it took for the same group to build 3 FORTRAN compilers (A, B
and C). For each compiler there is the time they estimated it would take them and the time it actually
took. For each subsequent compiler their estimates became closer to the truth, but in every case they
underestimated. Unwarrented optimism is afamiliar disease in computing. But prior experienceis
definitely helpful and the time to build the third compiler was less than one fifth that for the first one.

[]

Figure 1.3: History of three FORTRAN compilers

(v) Verification. Verification consists of three distinct aspects: program proving, testing and debugging.
Each of theseisan art initself. Before executing your program you should attempt to prove it is correct.
Proofs about programs are really no different from any other kinds of proofs, only the subject matter is
different. If a correct proof can be obtained, then oneis assured that for all possible combinations of
inputs, the program and its specification agree. Testing isthe art of creating sample data upon which to
run your program. If the program fails to respond correctly then debugging is needed to determine what
went wrong and how to correct it. One proof tells us more than any finite amount of testing, but proofs
can be hard to obtain. Many times during the proving process errors are discovered in the code. The
proof can't be completed until these are changed. Thisis another use of program proving, namely as a
methodol ogy for discovering errors. Finally there may be tools available at your computing center to aid
in the testing process. One such tool instruments your source code and then tells you for every data set:
(i) the number of times a statement was executed, (ii) the number of times a branch was taken, (iii) the
smallest and largest values of al variables. Asaminimal requirement, the test data you construct should
force every statement to execute and every condition to assume the value true and false at least once.

One thing you have forgotten to do is to document. But why bother to document until the programis
entirely finished and correct ? Because for each procedure you made some assumptions about its input
and output. If you have written more than afew procedures, then you have already begun to forget what
those assumptions were. If you note them down with the code, the problem of getting the procedures to
work together will be easier to solve. The larger the software, the more crucial is the need for
documentation.

The previous discussion applies to the construction of a single procedure as well as to the writing of a
large software system. Let us concentrate for a while on the question of developing a single procedure
which solves a specific task. This shifts our emphasis away from the management and integration of the
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various procedures to the disciplined formulation of a single, reasonably small and well-defined task.
The design process consists essentially of taking a proposed solution and successively refining it until an
executable program is achieved. The initial solution may be expressed in English or some form of
mathematical notation. At thislevel the formulation is said to be abstract because it contains no details
regarding how the objects will be represented and manipulated in a computer. If possible the designer
attempts to partition the solution into logical subtasks. Each subtask is similarly decomposed until all
tasks are expressed within a programming language. This method of design is called the top-down
approach. Inversely, the designer might choose to solve different parts of the problem directly in his
programming language and then combine these pieces into a complete program. Thisisreferred to asthe
bottom-up approach. Experience suggests that the top-down approach should be followed when creating
aprogram. However, in practice it is not necessary to unswervingly follow the method. A look ahead to
problems which may arise later is often useful.

Underlying all of these strategiesis the assumption that alanguage exists for adequately describing the
processing of data at severa abstract levels. For this purpose we use the language SPARK'S coupled
with carefully chosen English narrative. Such an algorithm might be called pseudo-SPARKS. Let us
examine two examples of top-down program devel opment.

Suppose we devise a program for sorting a set of n = 1 distinct integers. One of the simplest solutionsis
given by the following

"“from those integers which remain unsorted, find the smallest and place it next in the sorted list"

This statement is sufficient to construct a sorting program. However, several issues are not fully
specified such as where and how the integers are initially stored and where the result isto be placed.
One solution isto store the values in an array in such away that thei-th integer is stored in thei-th array
position, A(i) 1 =1 = n. We are now ready to give a second refinement of the solution:

for i []1tondo

examne A(i) to A(n) and suppose the
smal l est integer is at A(j); then

I nterchange A(i) and A(j).

end

Note how we have begun to use SPARKS pseudo-code. There now remain two clearly defined subtasks:
(1) to find the minimum integer and (ii) to interchange it with A(i). This|latter problem can be solved by
the code
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tLIaq); ad) L1ag); ag) ]t
Thefirst subtask can be solved by assuming the minimum is A (i), checking A(i) with A(i + 1), A(i +
2), ... and whenever asmaller element is found, regarding it as the new minimum. Eventualy A(n) is

compared to the current minimum and we are done. Putting all these observations together we get

procedure SORT(A, n)

1 foriDltondo

2 j L

3 for k L]j + 1 to n do

4 if A(k) < A(j) thenj [k

5 end

6 v Ll acy: ac) Lhagy: agy Lt
7 end

end SORT

The obvious question to ask at this point is: "does this program work correctly?"

Theorem: Procedure SORT (A,n) correctly sorts a set of n = 1 distinct integers, the result remainsin A
(1:n) suchthat A (1) <A (2) <...<A(n).

Proof: Wefirst note that for any i, say i = q, following the execution of lines 2 thru 6, it isthe case that A
(@) = A(r), g <r=n. Also, observe that when i becomes greater than g, A(1 .. g) is unchanged. Hence,
following the last execution of these lines, (i.e., i = n), we have A(1) = A(2) = ... = A(n).

We observe at this point that the upper limit of the for-loop in line 1 can be changed to n - 1 without
damaging the correctness of the algorithm.

From the standpoint of readability we can ask if this program is good. |s there a more concise way of
describing this algorithm which will still be as easy to comprehend? Substituting while statements for
the for loops doesn't significantly change anything. Also, extrainitialization and increment statements
would be required. We might consider a FORTRAN version using the ANSI language standard
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IF (N. LE. 1) GO TO 100

NML = N - 1

DO 101 | =1, NM
J =1

JP1 =J + 1

DO 102 K = JP1, N
IE (A(K).LT.A(J)) J =K
102 CONTI NUE

T = A(l)

ACl)

A(J)
AJ) =T

101 CONTI NUE
100 CONTI NUE

FORTRAN forces us to clutter up our algorithms with extra statements. The test for N = 1 is necessary
because FORTRAN DO-LOOPS always insist on executing once. Variables NM1 and JP1 are needed
because of the restrictions on lower and upper limits of DO-LOOPS.

L et us develop another program. We assume that we have n = 1 distinct integers which are already
sorted and stored in the array A(1:n). Our task isto determine if the integer X is present and if so to return
J such that x = A(j); otherwise return j = 0. By making use of the fact that the set is sorted we concelve of
the following efficient method:

"let A(mid) be the middle element. There are three possibilities. Either x < A(mid) in which case x can
only occur as A(1) to A(mid - 1); or x > A(mid) in which case x can only occur as A(mid + I) to A(n): or
x = A(mid) in which case set ] to mid and return. Continue in this way by keeping two pointers, lower
and upper, to indicate the range of elements not yet tested.”
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At this point you might try the method out on some sample numbers. This method is referred to as
binary search. Note how at each stage the number of elementsin the remaining set is decreased by about
one half. We can now attempt a version using SPARKS pseudo code.

procedure BI NSRCH( A, n, X, )

initialize | ower and upper

while there are nore elenments to check do

|l et A(m d) be the m ddle el enent

case
X > A(md): set lower to md + 1
X < A(md): set upper to md - 1
el se: found

end

end

not found

end Bl NSRCH

The above is not the only way we might write this program. For instance we could replace the while
loop by arepeat-until statement with the same English condition. In fact there are at least six different
binary search programs that can be produced which are al correct. There are many more that we might
produce which would be incorrect. Part of the freedom comes from the initialization step. Whichever
version we choose, we must be sure we understand the rel ationships between the variables. Below is one
complete version.

procedure BINSRCH (A n, X, j)

1 | ower D 1, upper D n

2 whil e | ower = upper do
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3 m d DL(Iovver + upper) / 2]

4 case

5 . x > A(nid): lower [ lmid+ 1
6 . x < A(mid): upper [ lnid- 1
7 . else: | Dm’d; return

8 end

9 end

10 jlLlo

end

To prove this program correct we make assertions about the relationship between variables before and
after the while loop of steps 2-9. Aswe enter thisloop and aslong as x is not found the following holds:

lower = upper and A (lower) = x = A (upper) and SORTED (A, n)

Now, if control passes out of the while loop past line 9 then we know the condition of line 2 isfalse
lower > upper.

This, combined with the above assertion implies that x is not present.

Unfortunately a complete proof takes us beyond our scope but for those who wish to pursue program
proving they should consult our references at the end of this chapter. An analysis of the computing time
for BINSRCH iscarried out in section 7.1.

Recursion

We have tried to emphasize the need to structure a program to make it easier to achieve the goals of
readability and correctness. Actually one of the most useful syntactical features for accomplishing thisis
the procedure. Given a set of instructions which perform alogical operation, perhaps a very complex
and long operation, they can be grouped together as a procedure. The procedure name and its parameters
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are viewed as a new instruction which can be used in other programs. Given the input-output
specifications of a procedure, we don't even have to know how the task is accomplished, only that it is
available. Thisview of the procedure impliesthat it isinvoked, executed and returns control to the
appropriate place in the calling procedure. What thisfailsto stressis the fact that procedures may call
themselves (direct recursion) before they are done or they may call other procedures which again invoke
the calling procedure (indirect recursion). These recursive mechanisms are extremely powerful, but even
more importantly, many times they can express an otherwise complex process very clearly. For these
reasons we introduce recursion here.

Most students of computer science view recursion as a somewhat mystical technique which only is
useful for some very special class of problems (such as computing factorials or Ackermann's function).
Thisis unfortunate because any program that can be written using assignment, the if-then-el se statement
and the while statement can also be written using assignment, if-then-else and recursion. Of course, this
does not say that the resulting program will necessarily be easier to understand. However, there are
many instances when thiswill be the case. When is recursion an appropriate mechanism for algorithm
exposition? One instance is when the problem itself is recursively defined. Factorial fits this category,
also binomial coefficients where

[]

can be recursively computed by the formula

[]

Another example isreversing a character string, S= 'X; ... X, Where SUBSTRING (Sii,j) isafunction

which returnsthe string X; ... x; for appropriately defined i andj and S | | T stands for concatenation of
two strings (asin PL/l). Then the operation REVERSE is easily described recursively as

procedur e REVERSE(S)

n L] LENGTH(S)
iIf n=1then return ()

el se return (REVERSE( SUBSTRI NG S, 2, n))

|| suBSTRINGS, 1, 1))

end REVERSE
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If this|ooks too simple |et us develop a more complex recursive procedure. Givenaset of n= 1
elements the problem isto print all possible permutations of this set. For exampleif the setis{a,b,c},
then the set of permutationsis{(a, b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a)}. It iseasy to see that
given n elementsthere are n ! different permutations. A simple algorithm can be achieved by looking at
the case of four elements (a,b,c,d). The answer is obtained by printing

(i) afollowed by al permutations of (b,c,d)

(ii) b followed by al permutations of (a,c,d)

(iii) c followed by all permutations of (b,a,d)

(iv) d followed by all permutations of (b,c,a)

The expression "followed by all permutations’ is the clue to recursion. It implies that we can solve the
problem for a set with n elements if we had an algorithm which worked on n - 1 elements. These
considerations lead to the following procedure which isinvoked by call PERM(A,1,n). A is acharacter
string e.g. A ='abcd’, and INTERCHANGE (A k,i) exchanges the k-th character of A with thei-th
character of A.

procedure PERM A, k, n)
If k =n then [print (A); return]

BL|A

for i L1k ton do

cal | | NTERCHANGE(A Kk, i)
call PERMA k + 1,n)
Alls

end

end PERM

Try this algorithm out on sets of length one, two, and three to insure that you understand how it works.
Then try to do one or more of the exercises at the end of this chapter which ask for recursive procedures.
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Another time when recursion is useful is when the data structure that the algorithm isto operate onis
recursively defined. We will see several important examples of such structures, especially listsin section
4.9 and binary treesin section 5.4. Another instance when recursion isinvaluable is when we want to
describe a backtracking procedure. But for now we will content ourselves with examining some simple,
iterative programs and show how to eliminate the iteration statements and replace them by recursion.
This may sound strange, but the objective is not to show that the result is smpler to understand nor more
efficient to execute. The main purpose is to make one more familiar with the execution of arecursive
procedure.

Suppose we start with the sorting algorithm presented in this section. To rewrite it recursively the first
thing we do isto remove the for loops and express the algorithm using assignment, if-then-else and the
go-to statement.

procedure SORT(A, n)

i [ 11

Ll: ifi=<n-1 /1 for i L]l1ton- 1dos/
then [j L)i: k []j +1

L2: if k = n /1for k L1j + 1 ton do//
then [if A(k) < A(j)

t hen | Dk

ka+1; go to L2]

v Ll acy; ai) Ll agys agy Ll

i Di + 1; go to L1]

end SORT

Now every place where we have alabel we introduce a procedure whose parameters are the variables
which are already assigned a value at that point. Every place where a"go to label" appears, we replace
that statement by a call of the procedure associated with that label. This gives us the following set of
three procedures.
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procedure SORT(A, n)

call SORTL1(A n,1)

end SORT

procedure SORTLI (A n,i)

if i =n- 1

then [j Lli; call MAXL2(A n,j,i + 1)
t Ll Ay Ay Lhagys agy L
call SORTL1(A n,i + 1)]

end SORTL1

procedure MAXL2(A, n,j, k)

If k =n

then [if A(K) < A(j) thenj [k

call MAXL2(A n,j,k + 1)]

end MAXL2

We can ssimplify these procedures somewhat by ignoring SORT (A,n) entirely and begin the sorting
operation by call SORTL1(A,n,1). Notice how SORTL 1 isdirectly recursive while it also uses procedure
MAXL2. Procedure MAXL2 is aso directly reculsive. These two procedures use eleven lines while the
original iterative version was expressed in nine lines; not much of a difference. Notice how in MAXL2

the fourth parameter k is being changed. The effect of increasing k by one and restarting the procedure
has essentially the same effect as the for loop.

Now let us trace the action of these procedures as they sort a set of five integers

[]

When a procedure isinvoked an implicit branch to its beginning is made. Thus arecursive call of a

file:/lIC{[E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book 1/chap01.htm (23 of 38)7/3/2004 3:56:36 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 1: INTRODUCTION WWW. itdevelopteam.com

program can be made to simulate a go to statement. The parameter mechanism of the procedureisa
form of assignment. Thus placing the argument k + 1 as the fourth parameter of MAXL2 is equivaent to

the statement k D k+ 1.

In section 4.9 we will see the first example of arecursive data structure, the list. Also in that section are
several recursive procedures, followed in some cases by their iterative equivalents. Rules are also given
there for eliminating recursion.

1.4 HOW TO ANALYZE PROGRAMS

One goal of thisbook isto develop skills for making evaluative judgements about programs. There are
many criteria upon which we can judge a program, for instance:

(i) Doesit do what we want it to do?

(i1) Does it work correctly according to the original specifications of the task?

(iii) Is there documentation which describes how to use it and how it works?

(iv) Are subroutines created in such away that they perform logical sub-functions?
(v) Isthe code readable?

The above criteriaare al vitally important when it comes to writing software, most especially for large
systems. Though we will not be discussing how to reach these goals, we will try to achieve them
throughout this book with the programs we write. Hopefully this more subtle approach will gradually
infect your own program writing habits so that you will automatically strive to achieve these goals.

There are other criteriafor judging programs which have a more direct relationship to performance.
These have to do with computing time and storage requirements of the algorithms. Performance
evaluation can be loosely divided into 2 major phases: (a) a priori estimates and (b) a posteriori testing.
Both of these are equally important.

First consider a priori estimation. Suppose that somewhere in one of your programs is the statement

XDX+ 1.

We would like to determine two numbers for this statement. The first is the amount of time asingle
execution will take; the second is the number of timesit is executed. The product of these numbers will
be the total time taken by this statement. The second statistic is called the frequency count, and this may
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vary from data set to data set. One of the hardest tasks in estimating frequency countsis to choose
adequate samples of data. It isimpossible to determine exactly how much time it takes to execute any
command unless we have the following information:

(i) the machine we are executing on:

(ii) its machine language instruction set;

(ii1) the time required by each machine instruction;

(iv) the trandlation a compiler will make from the source to the machine language.

It is possible to determine these figures by choosing areal machine and an existing compiler. Another
approach would be to define a hypothetical machine (with imaginary execution times), but make the
times reasonably close to those of existing hardware so that resulting figures would be representative.
Neither of these alternatives seems attractive. In both cases the exact times we would determine would
not apply to many machines or to any machine. Also, there would be the problem of the compiler, which
could vary from machine to machine. Moreover, it is often difficult to get reliable timing figures because
of clock limitations and a multi-programming or time sharing environment. Finaly, the difficulty of
learning another machine language outweighs the advantage of finding “exact” fictitioustimes. All these
considerations lead us to limit our goals for an a priori analysis. Instead, we will concentrate on
developing only the frequency count for all statements. The anomalies of machine configuration and
language will be lumped together when we do our experimental studies. Parallelism will not be
considered.

Consider the three examples of Figure 1.4 below.
for i D 1 to n do
for i D 1 to n do

foerltondo

XDX+| xDx+1
XDX+1

end

end
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end

(a) (b) (c)

Figure 1.4: Three simple programs for frequency counting.

In program (@) we assume that the statement XD x + 1isnot contained within any loop either explicit
or implicit. Then its frequency count is one. In program (b) the same statement will be executed n times
and in program (c) n2? times (assuming n = 1). Now 1, n, and n2 are said to be different and increasing
orders of magnitude just like 1, 10, 100 would be if we let n = 10. In our analysis of execution we will
be concerned chiefly with determining the order of magnitude of an algorithm. This means determining
those statements which may have the greatest frequency count.

To determine the order of magnitude, formulas such as

[]

often occur. In the program segment of figure 1.4(c) the statement x D x + 1isexecuted

[]

Simple forms for the above three formulas are well known, namely,

[]

In general

[]

To clarify some of these idesas, let uslook at a simple program for computing the n-th Fibonacci number.
The Fibonacci sequence starts as

0,1,1235,8,13,21, 34,55, ...

Each new term is obtained by taking the sum of the two previous terms. If we call the first term of the
sequence Fqthen Fg= 0, F; = 1 and in genera

Fn=Fn-1+ Fn-2, n= 2.
The program on the following page takes any non-negative integer n and prints the value F,.
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1 procedur e FlI BONACCI

2 read (n)

3-4 If n <O then [print ("error'); stop]
5-6 if n=0then [print ('0"); stop]
7-8 if n=1then [print ("1"); stop]
9 fnn [jo;fnm]_[jl

10 for i L12ton do

11 tn L] fnml + fnne

12 fame ] fom

13 famt [ fn

14 end

15 print (fn)

16 end FlI BONACCI

The first problem in beginning an analysisis to determine some reasonable values of n. A complete set
would include four cases: n<0,n=0,n=1and n > 1. Below is atable which summarizes the
frequency counts for the first three cases.

Step n<0 n=0 n=1

1 1 1 1
2 1 1 1
3 1 1 1
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4 1 0 0
5 0 1 1
6 0 1 0
7 0 0 1
8 0 0 1
9-15 0 0 0

These three cases are not very interesting. None of them exercises the program very much. Notice,
though, how each if statement has two parts: the if condition and the then clause. These may have
different execution counts. The most interesting case for analysis comes when n > 1. At this point the
for loop will actually be entered. Steps 1, 2, 3, 5, 7 and 9 will be executed once, but steps 4, 6 and 8 not
at all. Both commands in step 9 are executed once. Now, for n = 2 how often is step 10 executed: not n -
1 but n times. Though 2 to nisonly n - 1 executions, remember that there will be alast return to step 10
wherei isincremented to n + 1, the test i > n made and the branch taken to step 15. Thus, steps 11, 12,
13 and 14 will be executed n - 1 times but step 10 will be done n times. We can summarize all of this
with atable.

Step Frequency Step Frequency

1 1 9 2
2 1 10 n
3 1 11 n-1
4 0 12 n-1
5 1 13 n-1
6 0 14 n-1
7 1 15 1
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Figure 1.5: Execution Count for Computing F,

Each statement is counted once, so step 9 has 2 statements and is executed once for atotal of 2. Clearly,
the actual time taken by each statement will vary. The for statement isreally a combination of several
statements, but we will count it as one. The total count thenis5n + 5. We will often write this as O(n),
ignoring the two constants 5. This notation means that the order of magnitude is proportional to n.

The notation f(n) = O(g(n)) (read asf of n equals big-oh of g of n) has a precise mathematical definition.

Definition: f(n) = O(g(n)) iff there exist two constants ¢ and n, such that [f(n)| = c|g(n)| for al n = n,,.

f(n) will normally represent the computing time of some algorithm. When we say that the computing
time of an algorithm is O(g(n)) we mean that its execution takes no more than a constant times g(n). nis
a parameter which characterizes the inputs and/or outputs. For example n might be the number of inputs
or the number of outputs or their sum or the magnitude of one of them. For the Fibonacci program n
represents the magnitude of the input and the time for this program is written as T(FIBONACCI) = O(n).

We write O(1) to mean a computing time which is a constant. O(n) is called linear, O(n?) is called
quadratic, O(n3) is called cubic, and O(2") is called exponential. If an algorithm takestime O(log n) it is
faster, for sufficiently large n, than if it had taken O(n). Similarly, O(n log n) is better than O(n?) but not
as good as O(n). These seven computing times, O(1), O(log n), O(n), O(n log n), O(n2), O(n3), and O
(2M are the ones we will see most often throughout the book.

If we have two algorithms which perform the same task, and the first has a computing time whichis O
(n) and the second O(n2), then we will usually take the first as superior. The reason for thisisthat asn
increases the time for the second algorithm will get far worse than the time for the first. For example, if

the constant for algorithms one and two are 10 and 1/2 respectively, then we get the following table of
computing times:

n 10n n2/ 2
1 10 1/ 2
5 50 12-1/2

10 100 50
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15 150 112-1/2
20 200 200
25 250 312-1/2
30 300 450

For n = 20, algorithm two had a smaller computing time but once past that point algorithm one became
better. This shows why we choose the algorithm with the smaller order of magnitude, but we emphasize
that thisis not the whole story. For small data sets, the respective constants must be carefully
determined. In practice these constants depend on many factors, such as the language and the machine
oneisusing. Thus, we will usually postpone the establishment of the constant until after the program has
been written. Then a performance profile can be gathered using real time calculation.

Figures 1.6 and 1.7 show how the computing times (counts) grow with a constant equal to one. Notice
how the times O(n) and O(n log n) grow much more slowly than the others. For large data sets,
algorithms with a complexity greater than O(n log n) are often impractical. An algorithm which is
exponential will work only for very small inputs. For exponential algorithms, even if we improve the
constant, say by 1/2 or 1/3, we will not improve the amount of data we can handle by very much.

Given an algorithm, we analyze the frequency count of each statement and total the sum. Thismay give
a polynomial

P(n) = ¢gnk+ ¢ g nk1+ .+ cin+ ¢y

where the ¢, are congtants, ¢, # 0 and n is a parameter. Using big-oh notation, P(n) = O(nK). On the other
hand, if any step is executed 2" times or more the expression

c2" + P(n) = O(2n).

Another valid performance measure of an algorithm is the space it requires. Often one can trade space
for time, getting afaster algorithm but using more space. We will see cases of thisin subsequent
chapters.

[]

Figure 1.6: Rate of Growth of Common Computing Time Functions

logon n nlogon n2 n3 2N
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o 1 0 1 1 2
1 2 2 4 8 4

2 4 8 16 64 16

3 8 24 64 512 256

4 16 64 256 4096 65536

5 32 160 1024 32768 2, 147, 483, 648

Figure 1.7: Values for Computing Functions
We end this chapter with a problem from recreational mathematics which uses many of the SPARKS
features that have been discussed. A magic square isan n x n matrix of the integers 1 to n2 such that the
sum of every row, column and diagonal is the same. For example, if n =5 we have
15 8 1 24 17
16 14 7 5 23
22 20 13 6 4

3 21 19 12 10

9 2 25 18 11

where the common sum is 65. When nis odd H. Coxeter has given asimple rule for generating a magic
square:

"Start with 1 in the middle of the top row; then go up and left assigning numbers in increasing order to
empty squares, if you fall off the square imagine the same sgquare as tiling the plane and continue; if a
square is occupied, move down instead and continue."

The magic square above was formed using this rule. We now write a SPARKS program for creating an n
X n magic square for n odd.
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procedure MAQ C(square, n)

//for n odd create a magi c square which is declared as an array//
//square (0: n- 1, 0: n- 1)//

/[/(i,j) is a square position. 2 = key = n2 is integer valued.//

if nis even then [print ("input error'); stop]

sQuare | o
square (0,(n - 1)/2) [] 1; [/store 1 in mddle of first row/
key [] 2; | [] 0; | [] (n- 1)/2 /11,] are current position//

whil e key = n2 do

(k, 1) [] ((i - 1) nodn, (j - 1) nod n) /11 ook up and left//
if square (k,1) # 0

t hen i [] (i + 1) nod n / I squar e occupi ed, nove down//

else (i,]) [] (k, 1) //square (k,l) needs to be assigned//

square (i,j) L] key /lassign it a val uel/

key [ ] key + 1
end
print (n, square) //output result//

end MAG C

MAGIC isacomplete SPARKS procedure. The statement (i,}) D (k,1) isashorthand way of writing i
D K; D |. It emphasizes that the variables are thought of as pairs and are changed as a unit. The

file:/lIC{[E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book 1/chap01.htm (32 of 38)7/3/2004 3:56:36 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 1: INTRODUCTION WWW. itdevelopteam.com

reserved word mod computes the nonnegative remainder and is a built in function. The magic squareis
represented using atwo dimensional array having n rows and n column. For this application it is
convenient to number the rows (and columns) from zero to n - 1 rather than from one to n. Thus, when
the program "falls off the square" the mod operator setsi and/or j back to zeroor n - 1.

The while loop is governed by the variable key which is an integer variable initialized to 2 and increased
by one each time through the loop. Thus each statement within the while loop will be executed no more

than n2 - 1 times and hence the computing time for MAGIC is O(n2). Since there are n2 positionsin
which the algorithm must place a number, we see that O(n?) is the best bound an algorithm could have.
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EXERCISES

1. Look up the word algorithm or its older form algorismin the dictionary.

2. Consider the two statements: (i) Isn = 2 the largest value of n for which there exists positive integers
X, y and z such that x" + y" = zZ" has a solution; (ii) Store 5 divided by zero into X and go to statement 10.
Both do not satisfy one of the five criteria of an algorithm. Which criteria do they violate?

3. Describe the flowchart in figure 1.1 by using a combination of SPARK S and English. Can you do this
without using the go to? Now make it into an algorithm.

4. Discuss how you would actually represent the list of name and tel ephone number pairsin areal
machine. How would you handle people with the same last hame.

5. Write FORTRAN equivalents of the while, repeat-until, loop-forever and for statements of
SPARKS.

6. Can you think of aclever meaning for S.P.A.R.K.S.? Concentrate on the letter K first.

7. Determine the frequency counts for all statements in the following two SPARKS program segments:

1foriDlton 1i|j1

2 for j LIl1 toi 2 while i =n do
3 for k 11 to]j 3 xLk+1
4 x [ Ix +1 4 i L)i +1

5 end 5 end

6 end
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7 end
(a) (b)

8. Horner's Rule is ameans for evaluating a polynomia A(x) = a X"+ a, 1 x""1 + ... +a; x + agat a point
Xp using a minimum number of multiplications. Theruleis:

AX) = (- ((BnXo + BnayXo + - + 8% +

Write a SPARKS program to evaluate a polynomial using Horner's Rule. Determine how many times
each statement is executed.

9. Given n boolean variables x;,..., X, we wish to print al possible combinations of truth values they can

assume. For instance, if n = 2, there are four possibilities: true, true; true, false; false, true; false, false.
Write a SPARKS program to accomplish this and do afrequency count.

10. Compare the two functions n2 and 2n/4 for various values of n. Determine when the second becomes
larger than the first.

11. Write a SPARKS program which prints out the integer values of x, y, zin nondecreasing order. What
IS the computing time of your method?

12. Write a SPARKS procedure which searches an array A (1: n) for the element x. If x occurs, then set |
to its position in the array else set j to zero. Try writing this without using the go to statement.

13. One useful facility we might add to SPARKS is the ability to manipulate character strings. If x, y are
variables of type character, then we might like to implement the procedures:

(i) ZD CONCAT(x,y) which concatenates a copy of string y to the end of a copy of string x and assigns
the resulting string to z. Strings x and y remain unchanged.

(i) ZD SUBSTR(x,i,j) which copiesto z thei-th to the j-th character in string x with appropriate
definitionsfor j =0, i > |, etc. String X is unchanged.

(i) z D INDEX(x,y) which searches string x for the first occurrence of string y and sets z to its starting
position in x or else zero.

I mplement these procedures using the array facility.

14. Write a SPARKS procedure which is given an argument STRING, whose value is a character string
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of length n. Copy STRING into the variable FILE so that every sequence of blanksis reduced to asingle
blank. The last character of STRING is nonblank.

15. Design a program that counts the number of occurrences of each character in the string STRING of
length n. Represent your answer in the array ANS(1:k,1:2) where ANS(i,l) isthe i-th character and ANS
(1,2) isthe number of timesit occursin STRING.

16. Trace the action of the procedure below on the elements 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 searching
for |, 3, 13 and 21.

i [ 1,5 [Ln

repeat k D (i +j)/2

if Ak) =x theni [ ]k +1

elsej Llk-1

until 1 >

What is the computing time for this segment in terms of n?

17. Prove by induction:

[]
[]
[]

18. List as many rules of style in programming that you can think of that you would be willing to follow
yourself.

19. Using the notation introduced at the end of section 1.1, define the structure Boolean with operations
AND, OR, NOT, IMP and EQV (equivaent) using only the if-then-else statement. e.g. NOT (X) :: = if
X then false elsetrue.

20. Give aversion of a binary search procedure which initializes lower to zero and upper ton + |.

21. Take any version of binary search, express it using assignment, if-then-else and go to and then give
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an equivalent recursive program.

22. Analyze the computing time of procedure SORT as given in section 1.3.

23. Write arecursive procedure for computing the binomial coefficient D as defined in section 1.3
where D Analyze the time and space requirements of your algorithm.

24. Ackermann's function A(m,n) is defined as follows:

[]

Thisfunction is studied because it grows very fast for small values of m and n. Write arecursive
procedure for computing this function. Then write a nonrecursive algorithm for computing Ackermann's
function.

25. (Tower of Hanoi) There are three towers and sixty four disks of different diameters placed on the
first tower. The disks are in order of decreasing diameter as one scans up the tower. Monks were
reputedly supposed to move the disks from tower 1 to tower 3 obeying the rules: (i) only one disk can be
moved at any time; (ii) no disk can be placed on top of adisk with smaller diameter. Write arecursive
procedure which prints the sequence of moves which accomplish this task.

26. Write an equivalent recursive version of procedure MAGIC as given in section 1.4.

27. The pigeon hole principle states that if afunction f has n distinct inputs but less than n distinct
outputs then there exists two inputs a, b such that a ¥ b and f(a) = f(b). Give an algorithm which finds
the values a, b for which the range values are equal.

28. Given n, apositive integer determineif nisthe sum of al of itsdivisors; i.e. if nisthe sum of all t
suchthat 1=t <nandt dividesn.

29. Consider the function F(x) defined by
F(X) D if even(x) then x/2 else F(F(3x + 1))

Prove that F(x) terminates for all integers x. (Hint: consider integers of the form (2i + 1) 2k - 1 and use
induction.)

30. If Sisaset of n elements the powerset of Sisthe set of all possible subsets of S For exampleif S=
(a,b,c,) then POWERSET(S ={(), (a), (b), (c), (a,b), (a,c), (b,c), (a,b,c)}. Write arecursive procedure
to compute powerset ().
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« m )
CHAPTER 2: ARRAYS

2.1 AXIOMATIZATION

It is appropriate that we begin our study of data structures with the array. The array is often the only
means for structuring data which is provided in a programming language. Therefore it deserves a
significant amount of attention. If one asks a group of programmers to define an array, the most often
guoted saying is: a consecutive set of memory locations. This is unfortunate because it clearly reveals a
common point of confusion, namely the distinction between a data structure and its representation. It is
true that arrays are aimost always implemented by using consecutive memory, but not always.
Intuitively, an array isaset of pairs, index and value. For each index which is defined, thereisavaue
associated with that index. In mathematical terms we call this a correspondence or a mapping. However,
as computer scientists we want to provide a more functional definition by giving the operations which
are permitted on this data structure. For arrays this means we are concerned with only two operations
which retrieve and store values. Using our notation this object can be defined as:

structure ARRAY(val ue, i ndex)
decl are CREATE( ) D array
RETRI EVE( arr ay, i ndex) D val ue

STORE( arr ay, i ndex, val ue) D array,;

for all A< array, i,] € index, x = value |et
RETRI EVE( CREATE, i) :: = error

RETRI EVE(STORE(A, i ,X),j) :: =

I f EQUAL(i,j) then x else RETRIEVE(A j)

end

end ARRAY

The function CREATE produces a new, empty array. RETRIEVE takes asinput an array and an index,
and either returns the appropriate value or an error. STORE is used to enter new index-value pairs. The
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second axiom is read as "to retrieve the j-th item where x has already been stored at index i in Ais
equivalent to checking if i and | are equal and if so, x, or search for the j-th value in the remaining array,
A." Thisaxiom was originally given by J. McCarthy. Notice how the axioms are independent of any
representation scheme. Also, i and j need not necessarily be integers, but we assume only that an
EQUAL function can be devised.

If we restrict the index values to be integers, then assuming a conventional random access memory we
can implement STORE and RETRIEVE so that they operate in a constant amount of time. If we
interpret the indices to be n-dimensional, (i4,i», ....I,,), then the previous axioms apply immediately and

define n-dimensional arrays. In section 2.4 we will examine how to implement RETRIEVE and STORE
for multi-dimensional arrays using consecutive memory locations.

2.2 ORDERED LISTS

One of the ssimplest and most commonly found data object is the ordered or linear list. Examples are the
days of the week

(MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY,
SATURDAY, SUNDAY)

or the valuesin a card deck

(2,3,4,5,6,7,8,9, 10, Jack, Queen, King, Ace)

or the floors of a building

(basement, lobby, mezzanine, first, second, third)

or the years the United States fought in World War |1

(1941, 1942, 1943, 1944, 1945).

If we consider an ordered list more abstractly, we say that it is either empty or it can be written as
(a1,82,33, ---an)

where the g; are atoms from some set S

There are avariety of operations that are performed on these lists. These operations include:
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(i) find the length of thelist, n;

(ii) read the list from left-to-right (or right-to-left);
(iii) retrieve the i-th element, ||
(iv) store a new value into the i-th position, D;

(v) insert anew element at position D causing elements numbered i,i + 1, ...,n to become numbered i +
Li+2, ..n+1;

(vi) delete the element at position D causing elements numbered i + 1, ...,n to become numbered i,i +
1,..n-1

See exercise 24 for a set of axioms which uses these operations to abstractly define an ordered list. It is
not always necessary to be able to perform all of these operations; many times a subset will suffice. In
the study of data structures we are interested in ways of representing ordered lists so that these
operations can be carried out efficiently.

Perhaps the most common way to represent an ordered list is by an array where we associate the list
element g with the array index i. Thiswe will refer to as a sequential mapping, because using the

conventional array representation we are storing g; and &, ;. 1 into consecutive locationsi and i + 1 of the

array. This gives us the ability to retrieve or modify the values of random elementsin thelistin a
constant amount of time, essentially because a computer memory has random access to any word. We
can access the list element valuesin either direction by changing the subscript values in a controlled
way. It isonly operations (v) and (vi) which require real effort. Insertion and deletion using sequential
allocation forces us to move some of the remaining elements so the sequential mapping is preserved in
its proper form. It is precisely this overhead which leads us to consider nonsequential mappings of
ordered listsinto arrays in Chapter 4.

Let us jump right into a problem requiring ordered lists which we will solve by using one dimensional
arrays. This problem has become the classical example for motivating the use of list processing
techniques which we will seein later chapters. Therefore, it makes sense to look at the problem and see
why arrays offer only a partially adequate solution. The problem calls for building a set of subroutines
which allow for the manipulation of symbolic polynomials. By "“symbolic,” we mean the list of
coefficients and exponents which accompany a polynomial, e.g. two such polynomials are

A(X) =3x2+2x+4and B(X) = x*+ 10x3 + 3x2 + 1
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For a start, the capabilities we would include are the four basic arithmetic operations: addition,
subtraction, multiplication, and division. We will aso need input and output routines and some suitable
format for preparing polynomials as input. The first step isto consider how to define polynomials as a
computer structure. For a mathematician a polynomial is a sum of terms where each term has the form

ax€; xisthe variable, aisthe coefficient and e is the exponent. However thisis not an appropriate
definition for our purposes. When defining a data object one must decide what functions will be
available, what their input is, what their output is and exactly what it isthat they do. A complete
specification of the data structure polynomial is now given.

structure POLYNOM AL

decl are ZERQ( ) D poly; | SZER(( pol y) D Bool ean
COEF( pol vy, exp) D coef;

ATTACH( pol y, coef, exp) D pol y

REM pol y, exp) D pol y

SMULT( pol y, coef , exp) D pol y

ADD( pol y, pol y) [ ] pol y; MJILT(poly, poly) [ ] pol y;
for all P,Q = poly c,d, = coef e, f £ exp | et
REM ZERQ, f) :: = ZERO

REM ATTACH( P, c,e),f) :: =

iIf e =f then REMP,f) else ATTACH REMP,f), c, e)
| SZERQ( ZERO) :: = true

| SZERO( ATTACH(P, ¢, €e)):: =

I f COEF(P,e) = - c then | SZEROCREM P, e)) else false
COEF(ZERO,e) :: =0

COEF(ATTACH(P,c,e),f) :: =
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if e =1f then ¢ + COEF(P,f) el se CCEF(P,f)
SMULT(ZERO d, f) :: = ZERO

SMULT(ATTACH(P,c,e),d,f) :: =

ATTACH( SMULT(P, d, f),cl_ld, e + f)

ADD( P, ZERO):: = P
ADD( P, ATTACH(Q d, f)) :: = ATTACH(ADD(P, Q,d,f)
MULT(P, ZERO) :: = ZERO

MULT(P, ATTACH Q d,f)) :: =
ADD( MULT(P, Q , SMULT(P, d, f))
end

end POLYNOM AL

In this specification every polynomial is either ZERO or constructed by applying ATTACH to a
polynomial. For example the polynomial P = 10x - 12x3 - 10x + 0x2 is represented by the string

ATTACH(ATTACH(ATTACH(ATTACH(ZERO, 10,1),-12,3),
-10,1),0,2).

Notice the absense of any assumptions about the order of exponents, about nonzero coefficients, etc.
These assumptions are decisions of representation. Suppose we wish to remove from P those terms
having exponent one. Then we would write REM (P, 1) and by the axioms the above string would be
transformed into

ATTACH(REM(ATTACH(ATTACH(ATTACH(ZERO,10,1), - 12,3),
-10,1),1),0,2)

which is transformed into
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ATTACH(REM(ATTACH(ATTACH(ZERO,10,1), - 12,3),1),0,2)
which becomes
ATTACH(ATTACH(REM(ATTACH(ZERO,10,1),1) - 12,3),0,2)
which becomes

ATTACH(ATTACH(REM(ZERO,1), - 12,3),0,2)

which becomes finally

ATTACH(ATTACH(ZERO, - 12,3),0,2)

or - 12x3 + 0x2.

These axioms are valuable in that they describe the meaning of each operation concisely and without
implying an implementation. Note how trivial the addition and multiplication operations have become.

Now we can make some representation decisions. Exponents should be unique and in decreasing order is
avery reasonable first decision. This considerably simplifies the operations ISZERO, COEF and REM

while ADD, SMULT and MULT remain unchanged. Now assuming a new function EXP (poly) D exp
which returns the leading exponent of poly, we can write aversion of ADD which is expressed more like
program, but is still representation independent.

//C = A+ B where A B are the input polynomals//

c L] zero
while not | SZERO(A) and not | SZERQ(B) do
case
EXP(A) < EXP(B):
c | ATTACH(C, coEF(B, EXP(B) ), EXP(B))

B | REM B, EXP(B))

file:/lIC{[E%20Drive%20Data/My%20Books/Algorithm/DrDo...Books_Algorithms_Collection2ed/books/book1/chap02.htm (6 of 37)7/3/2004 4:01:13 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 2: ARRAYS

EXP(A) = EXP(B):

www.itdevelopteam.com

c [L] ATTACH( c, COEF( A, EXP( A) ) +COEF( B, EXP(B)) , EXP(A))
A Ll rem A Exp(A)); B L] REM B, EXP(B))

. EXP(A) > EXP(B):

c || ATTACH(C, COEF( A, EXP(A) ), EXP(A))

A L] REM A EXP(A))

end

end

insert any remaining termsin Aor Binto C

The basic loop of this algorithm consists of merging the terms of the two polynomials, depending upon
the result of comparing the exponents. The case statement determines how the exponents are related and
performs the proper action. Since the tests within the case statement require two terms, if one
polynomial gets exhausted we must exit and the remaining terms of the other can be copied directly into
the result. With these insights, suppose we now consider the representation question more carefully.

A general polynomial A(xX) can be written as
axXN +a, X1+ L+ ax+ ag

where a, # 0 and we say that the degree of A isn. Then we can represent A(x) as an ordered list of
coefficients using a one dimensional array of length n + 2,

A=(nag.any, -8 8g)-

The first element is the degree of A followed by the n + 1 coefficients in order of decreasing exponent.
This representation leads to very simple algorithms for addition and multiplication. We have avoided the
need to explicitly store the exponent of each term and instead we can deduce its value by knowing our
position in the list and the degree.

But are there any disadvantages to this representation? Hopefully you have already guessed the worst
one, which is the large amount of wasted storage for certain polynomials. Consider x1000 + 1, for
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instance. It will require a vector of length 1002, while 999 of those values will be zero. Therefore, we
are led to consider an alternative scheme.

Suppose we take the polynomial A(x) above and keep only its nonzero coefficients. Then we will really
have the polynomial

bpq X€ML + b x8M2 + |+ b xe0

(1)

where each b; is a nonzero coefficient of A and the exponents g are decreasing [ | ifalof As

coefficients are nonzero, thenm=n+1, ¢ =i, and b; = g; for ] Alternatively, only a, may be
nonzero, in which case m= 1, b, = a,,, and e; = n. In general, the polynomial in (1) could be represented
by the ordered list of length 2m + 1,

(M,€11-1,Pm-1,6m-2:0m-25 --,€0:00)-

Thefirst entry is the number of nonzero terms. Then for each term there are two entries representing an
exponent-coefficient pair.

Is this method any better than the first scheme? Well, it certainly solves our problem with x1000 + 1,
which now would be represented as (2,1000,1,0,1). Basic algorithms will need to be more complex
because we must check each exponent before we handle its coefficient, but thisis not too serious. Asfor

storage, this scheme could be worse than the former. For example, x4 + 10x3 + 3x2 + 1 would have the
two forms

(4,1,10,3,0,1) or (4,4,1,3,10,2,3,0,1).

In the worst case, scheme 2 requires less than twice as much storage as scheme 1 (when the degree =n
and all n + 1 coefficients are nonzero). But scheme 1 could be much more wasteful, asin the case of
x1000 + 1, where it needs more than 200 times as many locations. Therefore, we will prefer
representation scheme 2 and useit.

Let us now write aprocedure in SPARKS for adding two polynomials represented as in scheme 2.

procedur e PADD(A, B, O

[TA(1l:2m + 1), B(1l:2n + 1), C(1:2(m+ n) + 1)//
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1 ml]a; n e

2 p [] q [] r [] 2

3 while p 2z 2mand g = 2n do

4 case / | conpar e exponents//

A(p) = B(q): O(r +1) LIA(p + 1) +B(q + 1)
[/ add coefficients//

if C(r +1) #0

then [C(r) [] A(p); r [] r + 2]

/| store exponent//

p [] p + 2; ¢ [] q+ 2 /  advance to next
terns//

A(p) < B(q): or + 1) [IB(q+1); or) Lsq)
//store new terni/

q [] q+ 2;r [] ro+ 2 /  advance to next
term/

A(p) > B(q): or + 1) Llap+1); or) Ll Agp)
//store new term/

p [] p + 2; r [] r+ 2 /] advance to next

term /

end
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end

5 vvhilepDZmdo [/ copy remaining ternms of A//
ary LI apy: or + 1) LA + 1)

pr+2; rDr+2

end

6 vvhiquDZn do //copy remaining terns of B//
ar) Lletay: ar + 1) Llea + 1)

qu + 200 Dr + 2

end
7 C(l) [ Jri2 -1 /I nunber of ternms in the sum/
end PADD

Asthisisone of our first complex algorithms written in SPARKS, suppose we point out some features.
The procedure has parameters which are polynomial (or array) names, and hence they are capitalized.
Three pointers (p,q,r) are used to designate atermin A, B, or C.

Comments appear to the right delimited by double slashes. The basic iteration step is governed by a
while loop. Blocks of statements are grouped together using square brackets. Notice how closely the
actual program matches with the original design. The code isindented to reinforce readability and to
reveal more clearly the scope of reserved words. Thisis a practice you should adopt in your own coding.
Statement two is a shorthand way of writing

rDZ;qu;qu

L et us now analyze the computing time of this agorithm. It is natural to carry out thisanalysisin terms
of mand n, the number of nonzero termsin A and B respectively. The assignments of lines1 and 2 are
made only once and hence contribute O(1) to the overall computing time. If either n=0or m= 0, the
while loop of line 3 is not executed.
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In case neither m nor n equals zero, the while loop of line 3 is entered. Each iteration of thiswhile loop
requires O(1) time. At each iteration, either the value of p or q or both increases by 2. Since the iteration
terminates when either p or g exceeds 2m or 2n respectively, the number of iterations is bounded by m +

n - 1. Thisworst caseis achieved, for instance, when A(x) = Z"_x?' and B(x) = Z"_yx2'*1 Since none of
the exponents are the same in A and B, A(p) # B(q). Consequently, on each iteration the value of only
one of p or g increases by 2. So, the worst case computing time for thiswhile loop is O(n + m). The total
computing time for the while loops of lines5 and 6 is bounded by O(n + m), as the first cannot be

iterated more than m times and the second more than n . Taking the sum of all of these steps, we obtain O
(n + m) as the asymptotic computing time of this algorithm.

This example shows the array as a useful representational form for ordered lists. Returning to the
abstract object--the ordered list--for amoment, suppose we generalize our problem and say that it is now
required to represent a variable number of lists where the size of each may vary. In particular we now
have the mlists

(811,812, -89 1) (821,802: -8 ), - (BrpsBm2s -8 )
where n;, the size of thei-th list, is an integer greater than or equal to zero.

A two dimensional array could be a poor way to represent these lists because we would have to declare
it as A(m,max{ nq, ...,n}), which might be very wasteful of space. Instead we might store them in aone

dimensional array and include afront(i) and rear(i) pointer for the beginning and end of each list. This
only requires 2m+ nq + ny + ... + Ny, locations rather than mtimes max{ny, . . .,n,} locations. But the

one dimensional array presents problems when wetry to insert anitem inlisti and thereis no more
room unless we move the elements of listi + 1 and perhapslisti + 2, ...,list mto the right.

To make this problem more concrete, let us return to the ordered list of polynomials represented using
the second scheme. Suppose in addition to PADD, we have aso written procedures which subtract,
multiply, and divide two polynomials: PSUB, PMUL, and PDIV. We are making these four procedures
available to any user who wants to manipulate polynomials. This hypothetical user may have many
polynomials he wants to compute and he may not know their sizes.

He would include these subroutines along with a main procedure he writes himself. In this main program
he needs to declare arrays for all of his polynomials (which is reasonable) and to declare the maximum
size that every polynomia might achieve (which is harder and less reasonable). If he declares the arrays
too large, much of that space will be wasted. Consider the main routine our mythical user might write if
he wanted to compute the Fibonacci polynomials. These are defined by the recurrence relation

[]
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where Fg(X) = 1 and F; (x) = x. For example

Fo(x) = xL_JF (0 + Fo() =% + 1.

Suppose the programmer decides to use atwo dimensional array to store the Fibonacci polynomials, the
exponents and coefficients of F;(x) being stored in the i-th row. For example F(2,+) = (2,2,1,0,1) implies
F(2,1)=2,F(2,2) =2,F(2,3) =1, F(2,4) =0, F(2,5) = 1 and isthe polynomial x2 + 1. Then the
following program is produced.

procedure NAIN

decl are F(0:100, 203), TEMP(203)

read (n)

if n > 100 then [print ('n too |large') stop]

Fo,*) [1(1,0 1) //set Fy, = 1x0//

1x1//

F1,*) L1(1,1,0 /lset Fy

for i [12ton do

cal | PMUL(F(1,1),F(i - 1,1), TEMP(1)) /1 TEMP=x ||
Fi_(x)//

cal | PADD( TEMP(1),F(i - 2,1),F(i,1)) I1'F = TEMP +
Fi_ ol /

/I TEMP is no | onger needed//

end

for i D 0O to n do
call PPRINT(F(i, 1)) /I pol ynom al print routine//
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end
end MAI N

The author of this procedure has declared 101 * 203 = 20,503 locations to hold the Fibonacci
polynomials, which is about twice as much as is actually needed. A much greater saving could be
achieved if F;j(x) were printed as soon as it was computed in the first loop. Then by storing all
polynomialsin asingle array, 1000 locations would be more than adequate. However, storing several
polynomialsin asingle array alters the way one creates new polynomials and complicates mattersif they
are to be destroyed and the space reused.

This example reveals other limitations of the array as a means for data representation. The array is
usually a homogeneous collection of data which will not allow usto intermix data of different types.
Exponents and coefficients are really different sorts of numbers, exponents usually being small, non-
negative integers whereas coefficients may be positive or negative, integer or rational, possibly double,
triple or multiple precision integers or even other polynomials. Different types of data cannot be
accommodated within the usual array concept. Ideally, we would like a representation which would:

(i) require the programmer only to name his polynomial variables and declare one maximum size for the
entire working space;

(i) provide a system which would automatically maintain al polynomials until the number of terms
exceeds the work space;

(iii) allow the programmer to use different representations for different parts of the data object.

Let's pursue the idea of storing all polynomiasin asingle array called POLY'. Let the polynomials be
A(X) = 2x + 3, B(X) = X2 + 5x + 3, C(x) = 3x10 + 9x4
POLY:12345678910111213141516171819... max

[]

Then the name of a polynomial is never the array POLY , but a simple variable whose value is a pointer
into the place in POLY where it begins. For instance, in the above case we might have A=1, B =6, and
C = 13. Also we need a pointer to tell us where the next free location is, as above where free = 18.

If we made a call to our addition routine, say PADD (A,B,D), then it would take the polynomials starting
at POLY (A) and POLY (B) and store the result starting at POLY (free). If the result has k terms, then D
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D free and freeD free + 2k + 1. Now we have localized all storage to one array. As we create
polynomials, free is continually incremented until it tries to exceed max. When this happens must we
quit? We must unless there are some polynomials which are no longer needed. There may be several
such polynomials whose space can be reused. We could write a subroutine which would compact the
remaining polynomials, leaving alarge, consecutive free space at one end. But this may require much
data movement. Even worse, if we move a polynomial we must change its pointer. This demands a
sophisticated compacting routine coupled with a disciplined use of names for polynomials. In Chapter 4
we will see an elegant solution to these problems.

2.3 SPARSE MATRICES

A matrix isamathematical object which arisesin many physical problems. As computer scientists, we
are interested in studying ways to represent matrices so that the operations to be performed on them can
be carried out efficiently. A general matrix consists of mrows and n columns of numbers asin figure 2.1.

[]
[]

Figure 2.1: Example of 2 matrices

The first matrix has five rows and three columns, the second six rows and six columns. In general, we
write m X n (read m by n) to designate a matrix with m rows and n columns. Such a matrix has mn
elements. When mis equal to n, we call the matrix square.

It isvery natural to store amatrix in atwo dimensional array, say A(1:m, 1:n). Then we can work with
any element by writing A(i,j); and this element can be found very quickly, as we will see in the next
section. Now if we look at the second matrix of figure 2.1, we see that it has many zero entries. Such a
matrix is called sparse. Thereis no precise definition of when amatrix is sparse and when it is not, but it
Is a concept which we can all recognize intuitively. Above, only 8 out of 36 possible elements are
nonzero and that is sparse! A sparse matrix requires us to consider an alternate form of representation.
This comes about because in practice many of the matrices we want to deal with are large, e.g., 1000 X
1000, but at the same time they are sparse: say only 1000 out of one million possible elements are
nonzero. On most computers today it would be impossible to store afull 2000 X 1000 matrix in the
memory at once. Therefore, we ask for an alternative representation for sparse matrices. The alternative
representation will explicitly store only the nonzero elements.

Each element of amatrix is uniquely characterized by its row and column position, say i,j. We might
then store amatrix asalist of 3-tuples of the form

(i,j,vaue).
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Also it might be helpful to organize thislist of 3-tuplesin some way, perhaps placing them so that the
row numbers are increasing. We can go one step farther and require that all the 3-tuples of any row be
stored so that the columns are increasing. Thus, we might store the second matrix of figure 2.1 in the
array A(0:t,1:3) wheret = 8 is the number of nonzero terms.

A(O, 6, 6, 8
(1, 1, 1, 15
(2, 1, 4, 22
(3, 1, 6, -15
(4, 2, 2, 11
(5, 2, 3, 3
(6, 3, 4, -6
(7, 5 1, 91
(8, 6, 3, 28
Figure 2.2: Sparse matrix stored as triples

The elements A(0,1) and A(0,2) contain the number of rows and columns of the matrix. A(0,3) contains
the number of nonzero terms.

Now what are some of the operations we might want to perform on these matrices? One operation is to
compute the transpose matrix. This is where we move the elements so that the element in thei,j position
gets put in thej,i position. Another way of saying thisisthat we are interchanging rows and columns.
The elements on the diagonal will remain unchanged, sincei =j.

The transpose of the example matrix looks like

1, 2, 3
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B(O, 6, 6, 8

(1, 1, 1, 15

(2, 1, 5, 91

(3, 2, 2, 1

(4, 3, 2, 3

(5, 3, 6, 28

(6, 4, 1, 22

(7, 4, 3, -6

(8, 6, 1, -15
Since Ais organized by row, our first ideafor atranspose algorithm might be
for each row i do
t ake el enent (i,j,val) and
store it in (j,i,val) of the transpose
end

The difficulty isin not knowing where to put the element (j,i,val) until all other elements which precede
it have been processed. In our example of figure 2.2, for instance, we have item

(1,1,15) which becomes (1,1,15)
(1,4,22) which becomes (4,1,22)
(1,6, - 15) which becomes (6,1, - 15).

If we just place them consecutively, then we will need to insert many new triples, forcing usto move
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elements down very often. We can avoid this data movement by finding the elementsin the order we
want them, which would be as

for all elements in colum j do

pl ace elenent (i,j,val) in position (j,i,val)

end

Thissaysfind all elementsin column 1 and store them into row 1, find al elementsin column 2 and
storethem inrow 2, etc. Since the rows are originally in order, this means that we will locate elementsin
the correct column order aswell. Let us write out the algorithm in full.

procedure TRANSPCSE (A, B)

/1 Ais a mtrix represented in sparse form/
/Il Bis set to be its transpose//

1 (mn,t) L] (A0 1), A0 2), A0, 3))

2 (B(0,1),B(0,2),B(0,3)) L] (nmt)

3 if t L]0 then return I/ check for zero matrix//

4 qDl //q is position of next termin B//

5 for col D 1 to n do //transpose by col ums//

6 for p D 1 tot do //for all nonzero terns do//

7 i f A(p,2) = col /|l correct columm//

8 then [(B(q,1),B(q,2),B(q,3))] //insert next term
of B//

9 (A(P, 2),A(p, 1), A(p, 3))
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10 qgllq+ 1
11 end
12 end

13 end TRANSPOSE

The above algorithm makes use of (lines 1, 2, 8 and 9) the vector replacement statement of SPARKS.
The statement

@b,o)l_l(de

Isjust a shorthand way of saying

aDd; bDe; ch.

It is not too difficult to see that the algorithm is correct. The variable g always gives us the position in B
where the next term in the transpose is to be inserted. The termsin B are generated by rows. Since the
rows of B are the columns of A, row i of B is obtained by collecting all the nonzero termsin column i of
A. Thisis precisely what is being donein lines 5-12. On the first iteration of the for loop of lines 5-12 all
terms from column 1 of A are collected, then al terms from column 2 and so on until eventually, all
terms from column n are collected.

How about the computing time of this algorithm! For each iteration of the loop of lines 5-12, the if
clause of line 7 is tested t times. Since the number of iterations of the loop of lines5-12 is n, the total
time for line 7 becomes nt. The assignment in lines 8-10 takes place exactly t times as there are only t
nonzero termsin the sparse matrix being generated. Lines 1-4 take a constant amount of time. The total
time for the algorithm is therefore O(nt). In addition to the space needed for A and B, the algorithm
requires only afixed amount of additional space, i.e. space for the variablesm, n, t, g, col and p.

We now have a matrix transpose algorithm which we believe is correct and which has a computing time
of O(nt). This computing timeis alittle disturbing since we know that in case the matrices had been
represented as two dimensional arrays, we could have obtained the transpose of an X mmatrix intime O
(nm). The algorithm for this takes the form:

foerltondo

for i Dlto m do
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B(j,i) L) A, j)
end
end

The O(nt) time for algorithm TRANSPOSE becomes O(n2 m) when t is of the order of nm. Thisisworse
than the O(nm) time using arrays. Perhaps, in an effort to conserve space, we have traded away too much
time. Actually, we can do much better by using some more storage. We can in fact transpose a matrix
represented as a sequence of triplesin time O(n + t). Thisagorithm, FAST __ TRANSPOSE, proceeds
by first determining the number of elementsin each column of A. This gives us the number of elements
in each row of B. From this information, the starting point in B of each of itsrows s easily obtained. We
can now move the elements of A one by one into their correct position in B.

procedur e FAST-- TRANSPCSE( A, B)
/[/Ais an array representing a sparse mX n matrix with t nonzero
terms. The transpose is stored in B using only 't + n)

operations//

declare S(1:n),T(1:n); //local arrays used as pointers//
1 (mn,t) L] (A0, 1), A0, 2), A0, 3))
2 (B(0O,1),B(0,2),B(0, 3)) D (n,mt) [/ store di nensions of

t ranspose//

3 it t L]0 then return //zero matrix//

4 foriDltondoS(i)DOend

5 for i Dl tot do [1S(k) is the nunber of//

6 S(A(i,2)) L] s(aii,2) + 1 //elements in row k of B//
7 end
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8 T(1) []1

9 for i [] 2 to n do [/ T(i) is the starting//
10 TGy LI7 - 1) + s(i - 1) //position of rowi in
B/ /

11 end

12 for i []1tot do //nmove all t elenments of Ato B//
13 i LA, 2 /1j is the rowin B//

14 (B(T(j),1),B(T(j),2),B(T(j),3))D //store in
triplell

15 (A(1,2),A(1,1),A(i,3))

16 T(j) [] T(j) + 1 /lincrease row | to next spot//
17 end

18 end FAST- - TRANSPOSE

The correctness of algorithm FAST--TRANSPOSE follows from the preceding discussion and the
observation that the starting point of row i,i > 1of BisT(i - 1) + i - 1) where §i - 1) isthe number of
elementsinrow i - 1 of Band T(i - 1) isthe starting point of row i - 1. The computation of Sand T is
carried out inlines 4-11. In lines 12-17 the elements of A are examined one by one starting from the first
and successively moving to the t-th element. T(j) is maintained so that it is always the position in B
where the next element in row j isto beinserted.

There are four loops in FAST--TRANSPOSE which are executed n, t, n - 1, and t times respectively.
Each iteration of the loops takes only a constant amount of time, so the order of magnitudeis O(n + t).
The computing time of O(n + t) becomes O(nm) whent is of the order of nm. This is the same as when
two dimensional arrays were in use. However, the constant factor associated with FAST __ TRANSPOSE
is bigger than that for the array algorithm. When t is sufficiently small compared to its maximum of nm,
FAST __ TRANSPOSE will be faster. Hence in this representation, we save both space and time! This
was not true of TRANSPOSE since t will almost always be greater than max{ n,m} and O(nt) will
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therefore always be at least O(nm). The constant factor associated with TRANSPOSE is also bigger than
the one in the array algorithm. Finally, one should note that FAST__ TRANSPOSE requires more space
than does TRANSPOSE. The space required by FAST __ TRANSPOSE can be reduced by utilizing the
same space to represent the two arrays Sand T.

If we try the algorithm on the sparse matrix of figure 2.2, then after execution of the third for loop the
valuesof Sand T are

(1) (2 (3 (4 (3 (86
S= 2 1 2 2 0 1
T= 1 3 4 6 8 8

(i) isthe number of entriesin row i of the transpose. T(i) points to the position in the transpose where
the next element of row i isto be stored.

Suppose now you are working for a machine manufacturer who is using a computer to do inventory
control. Associated with each machine that the company produces, say MACH(1) to MACH(m), thereis
alist of parts that comprise each machine. This information could be represented in atwo dimensional
table

PART(1) PART(2) PART(3) ... PART(n)
MACH(1) | O, 5, 2, 0
MACH(2) | O, 0, 0, 3
MACH(3) | 1, 1, 0, 8

I

I

I
MACH(M) | 6, 0, 0, 7
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| array MACHPT(m n)

The table will be sparse and all entries will be non-negative integers. MACHPT(i,j) is the number of
unitsof PART(j) in MACH(i). Each part isitself composed of smaller parts called microparts. This data
will also be encoded in atable whose rows are PART(1) to PART(n) and whose columns are MICPT (1)
to MICPT(p). We want to determine the number of microparts that are necessary to make up each
machine.

Observe that the number of MICPT(j) making up MACH(i) is
MACHPT(i,1) * MICPT(1,)) + MACHPT(i,2) * MICPT(2,)
+ ...+ MACHPT(i,n) * MICPT(n,))

where the arrays are named MACHPT (m,n) and MICPT(n,p). This sum is more conveniently written as

[]

If we compute these sums for each machine and each micropart then we will have atotal of mp values
which we might store in athird table MACHSUM (m,p). Regarding these tables as matrices this
application leads to the general definition of matrix product:

Given Aand Bwhere Aism * nand Bisn * p, the product matrix C hasdimensionm = p. Itsi,]
element is defined as

[]

for D and D The product of two sparse matrices may no longer be sparse, for instance,

[]

Consider an algorithm which computes the product of two sparse matrices represented as an ordered list
instead of an array. To compute the elements of C row-wise so we can store them in their proper place
without moving previously computed elements, we must do the following: fix arow of A and find all
elementsin columnj of B forj =1,2,...,p. Normally, to find all the elementsin column j of B we would
have to scan all of B. To avoid this, we can first compute the transpose of B which will put all column
elements consecutively. Once the elementsin row i of A and column j of B have been located, we just do
amerge operation similar to the polynomial addition of section 2.2. An alternative approach is explored
in the exercises.

Before we write a matrix multiplication procedure, it will be useful to define a sub-procedure:
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procedure STORESUM (C, g, row, col, sum
/[1if sumis nonzero then along with its row and col um position

it is stored into the g-th entry of the matrix//

if sum# 0 then [(C(q,1),C(q,2),q,3) L]

(row, col , sum

qu+1; sumDO]
end STORESUM

The algorithm MMULT which multiplies the matrices A and B to obtain the product matrix C uses the
strategy outlined above. It makes use of variablesi,j,q,r,col and row__begin. The variabler isthe row of
A that is currently being multiplied with the columns of B. row__begin isthe position in A of the first
element of row r. col isthe column of B that is currently being multiplied with row r of A. g isthe
position in C for the next element generated. i and j are used to successively examine elements of row r
and column col of A and B respectively. In addition to all this, line 6 of the algorithm introduces a

dummy term into each of A and D This enables us to handle end conditions (i.e., computations
involving the last row of A or last column of B) in an elegant way.

We |eave the correctness proof of this agorithm as an exercise. Let us examine its complexity. In
addition to the space needed for A, B, C and some simple variables, space is a'so needed for the

transpose matrix D Algorithm FAST__ TRANSPOSE also needs some additional space. The exercises

explore a strategy for MMULT which does not explicitly computeD and the only additional space
needed is the same as that required by FAST _ TRANSPOSE. Turning our attention to the computing
time of MMULT, we see that lines 1-6 require only O(p + t,) time. The while loop of lines 7-34 is

executed at most m times (once for each row of A). In each iteration of the whileloop of lines 9-29
either the value of i or j or of both increasesby 1 or i and col are reset. The maximum total increment in
j over thewholeloopist,. If d, isthe number of termsin row r of A then the value of i can increase at

most d, times before i moves to the next row of A.

[]

When this happens, i isreset torow___begininline 13. At the same time col is advanced to the next
column. Hence, this resetting can take place at most p times (there are only p columnsin B). The total
maximum incrementsin i is therefore pd,. The maximum number of iterations of the while loop of lines
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9-29 istherefore p + pd, + t,. The time for thisloop while multiplying with row r of Ais O(pd, + t,).
Lines 30-33 take only O(d,) time. Hence, the time for the outer while loop, lines 7-34, for the iteration
with row r of AisO(pd, + t,). The overall time for thisloop isthen O(Z,(pd, + t5)) = O(pt; + mt,).

Once again, we may compare this computing time with the time to multiply matrices when arrays are
used. The classical multiplication algorithm is:

for i Dlto m do

for j Dltopdo
sumDO

forletondo

suml_| sum + A(i, k) * B(k,j)

end

C(i,j) D sum
end
end

The time for thisis O(mnp). Since t; = nmand t, =< np, the time for MMULT is at most O(mnp).

However, its constant factor is greater than that for matrix multiplication using arrays. In the worst case
when t; = nmor t, = np, MMULT will be slower by a constant factor. However, when t; and t, are

sufficiently smaller than their maximum valuesi.e., A and B are sparse, MMULT will outperform the
above multiplication algorithm for arrays.

The above analysisfor MMULT is nontrivial. It introduces some new concepts in algorithm analysis and
you should make sure you understand the analysis.

Asin the case of polynomials, this representation for sparse matrices permits one to perform operations
such as addition, transpose and multiplication efficiently. There are, however, other considerations
which make this representation undesirable in certain applications. Since the number of termsin a sparse
matrix is variable, we would like to represent all our sparse matricesin one array rather than using a
separate array for each matrix. This would enable us to make efficient utilization of space. However,

file:///C|/E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book1/chap02.htm (24 of 37)7/3/2004 4:01:13 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 2: ARRAYS WWW.itdeveIopteam.com

when thisis done, we run into difficultiesin allocating space from this array to any individual matrix.
These difficulties also arise with the polynomial representation of the previous section and will become
apparent when we study a similar representation for multiple stacks and queues (section 3.4).

2.4 REPRESENTATION OF ARRAYS

Even though multidimensional arrays are provided as a standard data object in most high level
languages, it isinteresting to see how they are represented in memory. Recall that memory may be
regarded as one dimensional with words numbered from 1 to m. So, we are concerned with representing
n dimensional arraysin aone dimensional memory. While many representations might seem plausible,
we must select one in which the location in memory of an arbitrary array element, say A(iq,ip, ....i;y), Can

be determined efficiently. Thisis necessary since programs using arrays may, in general, use array
elements in arandom order. In addition to being able to retrieve array elements easily, itisalso
necessary to be able to determine the amount of memory space to be reserved for a particular array.
Assuming that each array element requires only one word of memory, the number of words needed is
the number of elementsin the array. If an array isdeclared A(l :uy,lo:us .. 14Uy, thenit is easy to see

that the number of elementsis
One of the common waysto represent an array isin row major order. If we have the declaration

A(4:5, 2:4,1:2, 3:4)

then we have atotal of 2 D 3 D 2 D 2 = 24 elements. Then using row major order these elements will
be stored as

A(4,2,1,3), A(4,2,1,4), A(4,2,2,3), A(4,2,2,4)

and continuing

A(4,3,1,3), A(4,3,1,4), A(4,3,2,3), A(4,3,2,4)

for 3 more sets of four until we get

A(5,4,1,3), A(54,1,4), A(5,4,2,3), A(54,2,4).

We see that the subscript at the right moves the fastest. In fact, if we view the subscripts as numbers, we

see that they are, in some sense, increasing:
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Another synonym for row major order islexicographic order.

From the compiler's point of view, the problem is how to translate from the name A(i4,i», ...,i;) to the

correct location in memory. Suppose A(4,2,1,3) is stored at location 100. Then A(4,2,1,4) will be at 101
and A(5,4,2,4) at location 123. These two addresses are easy to guess. In general, we can derive a
formulafor the address of any element. This formula makes use of only the starting address of the array
plus the declared dimensions.

To smplify the discussion we shall assume that the lower bounds on each dimension |; are 1. The
general case when |; can be any integer is discussed in the exercises. Before obtaining a formulafor the

case of an n-dimensional array, let uslook at the row major representation of 1, 2 and 3 dimensional
arrays. To begin with, if Aisdeclared A(1:u,), then assuming one word per element, it may be

represented in sequential memory asin figure 2.3. If D Isthe address of A(1), then the address of an
arbitrary element A(i) isjust ||+ (i - 1).

array elenment: A(l), A(2), A3, ..., A(i), ..., Aluy)

addr ess: D,D+1,D+2, ...,D+i—l,...,|j+u1—1

total nunber of elenments = uy
Figure 2.3: Sequential representation of A(1:u,)

The two dimensional array A(1:uq,1:u,) may be interpreted as u, rows: row 1,row », ...,Fow 4, €ach row
consisting of u, elements. In arow major representation, these rows would be represented in memory as
infigure 2.4.

[]
[]

Figure 2.4: Sequential representation of A(uq,u,)
Again, if |_listhe address of A(1,1), then the address of Ai,1) isL_|+ (i - 1)u,, astherearei - 1 rows
each of size u, preceding the first element in the i-th row. Knowing the address of A(i,1), we can say that

the address of A(i,)) isthen simpIyD +(-Du,+(j-1).
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Figure 2.5 shows the representation of the 3 dimensional array A(1:uy,1:u,,1:u3). Thisarray is

interpreted as u; 2 dimensional arrays of dimension u, x uz . To locate A(i,j,K), we first obtain D +(i -
1) u, uz asthe address for A(i,1,1) since there arei- 1 2 dimensional arrays of size u, X uz preceding this

element. From this and the formula for addressing a 2 dimensional array, we obtain D +(-1uyuz+
(- 1) uz+ (k- 1) asthe address of A(i,j,k).

Generalizing on the preceding discussion, the addressing formulafor any element A(i4,i, ...,i) inan n-
dimensional array declared as A(uy,U,, ...,u,) may be easily obtained. If D isthe addressfor A(1,1, ...,1)
then_|+ (i1, - Duoug ... U, isthe address for A(iy |, ...,1). The address for A(i4,io,1, ...,1) isthen [+
(i1, - Duoug ... Uy + (io - Duguy ... Uy,

Repeating in this way the address for A(iq,i», ...,i,) IS

[]

(a) 3-dimensional array A(uq,u,,u3) regarded asuq 2-dimensional arrays.

[]

(b) Sequential row major representation of a 3-dimensional array. Each 2-dimensional
array is represented as in Figure 2.4.

Figure 2.5: Sequential representation of A(uq,u,,us)

[]

Note that & may be computed from D using only one multiplication as & = U1 & 1. Thus, acompiler
will initially take the declared bounds uy, ...,u,, and use them to compute the constants a, ...,a,.q using n
- 2 multiplications. The address of A(i4, ...,in) can then be found using the formula, requiring n - 1 more
multiplications and n additions.

An dternative scheme for array representation, column major order, is considered in exercise 21.

To review, in this chapter we have used arrays to represent ordered lists of polynomials and sparse
matrices. In all cases we have been able to move the values around, accessing arbitrary elementsin a
fixed amount of time, and this has given us efficient algorithms. However severa problems have been
raised. By using a sequential mapping which associates a; of (ay, ...,a,) with the i-th element of the
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array, we are forced to move data around whenever an insert or delete operation is used. Secondly, once
we adopt one ordering of the data we sacrifice the ability to have a second ordering simultaneously.

EXERCISES

1. Write a SPARKS procedure which multiplies two polynomials represented using scheme 2 in Section
2.2. What is the computing time of your procedure?

2. Write a SPARKS procedure which evaluates a polynomial at avalue xy using scheme 2 as above. Try
to minimize the number of operations.

3.If A= (ay, ....a,) and B = (b, ...,by) are ordered lists, then A< B if g; = by for_|and a < bjorifag=

b; for D and n < m. Write a procedure which returns -1,0, + 1 depending upon whether A< B, A= Bor
A > B. Assume you can compare atoms g and b.

4. Assumethat n lists, n > 1, are being represented sequentially in the one dimensional array SPACE (1.:
m). Let FRONT(;) be one less than the position of the first element in theith list and let REAR(i) point

to the last element of theith list, 1 =i = n. Further assume that REAR(i) = FRONT(i + 1), 1 =i = nwith
FRONT(n + 1) = m. The functions to be performed on these lists are insertion and del etion.

a) Obtain suitable initial and boundary conditions for FRONT (i) and REAR(i)

b) Write a procedure INSERT (i ,j,item) to insert item after the (j - 1)st element inlisti. This procedure
should fail to make an insertion only if there are aready m elementsin SPACE.

5. Using the assumptions of (4) above write a procedure DELETE(i j,item) which sets item to the j-th
element of thei-th list and removesit. Thei-th list should be maintained as sequentially stored.

6. How much space is actually needed to hold the Fibonacci polynomials Fg,F, ..,F100?

7. In procedure MAIN why is the second dimension of F = 203?

8. The polynomias A(X) = x2" + x2"2+ .. + x2+ x0 and B(x) = x2™1+ x2"1 + .. + x3 + x cause PADD
to work very hard. For these polynomials determine the exact number of times each statement will be
executed.

9. Analyze carefully the computing time and storage requirements of algorithm FAST--TRANSPOSE.
What can you say about the existence of an even faster algorithm?
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10. Using the ideain FAST--TRANSPOSE of mrow pointers, rewrite algorithm MMUL to multiply two
sparse matrices A and B represented as in section 2.3 without transposing B. What is the computing time
of your algorithm?

11. When al the elements either above or below the main diagonal of a square matrix are zero, then the
matrix is said to be triangular. Figure 2.6 shows alower and upper triangular matrix.

[]
[]

Figure 2.6

In alower triangular matrix, A, with n rows, the maximum number of nonzero termsinrow i isi. Hence,
the total number of nonzero termsisZ",_, i = n(n + 1)/2. For large n it would be worthwhile to save the

space taken by the zero entries in the upper triangle. Obtain an addressing formulafor elements g; in the

lower triangle if thislower triangleis stored by rowsin an array B(1:n(n + 1)/2) with A(1,1) being stored
in B(1).

What is the relationship between i and j for elementsin the zero part of A?

12. Let A and B be two lower triangular matrices, each with n rows. The total number of elementsin the
lower trianglesisn(n + 1). Devise a scheme to represent both the trianglesin an array C(1:n,1:n + 1).
[Hint: represent the triangle of A asthe lower triangle of C and the transpose of B as the upper triangle of
C.] Write algorithmsto determine the values of A(i,j), B(i,j)) 1 =i, j = nfromthe array C.

13. Another kind of sparse matrix that arises often in numerical analysisisthe tridiagonal matrix. In this
square matrix, all elements other than those on the major diagonal and on the diagonals immediately
above and below this one are zero

[]

Figure 2.7: Tridiagonal matrix A

If the elements in the band formed by these three diagonal s are represented rowwise in an array, B, with
A (1,1) being stored at B(1), obtain an algorithm to determine the value of A(i,j), 1 =i, j = nfromthe
array B.

14. Define a square band matrix Ay, 5 to be an x n matrix in which all the nonzero terms lie in aband

centered around the main diagonal. The band includes a - 1 diagonals below and above the main
diagonal and also the main diagonal.
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a) How many elements are there in the band of A, ;?
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b) What is the relationship between i and j for elements g;; in the band of A, ;?

c) Assume that the band of An,a is stored sequentially in an array B by diagonals starting with the
lowermost diagonal. Thus A4,3 above would have the following representation:

B(1) B(2) B(3) B(4) B(5) B(6) B(7) B(8) B(9) B(10) B(11) B(12) B(13) B
(14)

9 7 8 3 6 6 0 2 8 7 4 9 8
4

azp 842 QAp1 A4z Q43 A1y Ay Azz ay4 A1p dpz Agz4 413 Ay
Obtain an addressing formula for the location of an element aij in the lower band of An,a.

e.g. LOC(a31) =1, LOC(a42) = 2 in the example above.

15. A generaized band matrix Ay 5, isan x nmatrix A in which all the nonzero termsliein aband
made up of a - 1 diagonals below the main diagonal, the main diagonal and b - 1 diagonals above the

main diagonal (see the figure on the next page)

a) How many elements are there in the band of A, 5 ,?
b) What is the relationship between i and j for elements a; in the band of Ay, 5 ,?

c) Obtain a sequential representation of the band of Ay, 5 , in the one dimensiond array B. For this
representation write an algorithm VALUE (n,a,b,1,},B) which determines the value of element g;; in the
matrix A 5 p- The band of A, , |, isrepresented in the array B.

[]

16. How much time does it take to locate an arbitrary element A(i,j) in the representation of section 2.3
and to change its value?

17. A variation of the scheme discussed in section 2.3 for sparse matrix representation involves
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representing only the non zero termsin a one dimensional array V, in the order described. In addition, a
strip of n x mbits, By (n,m), isalso kept. Ba(i,j) = 0if A(i,j) = 0 and Ba(i,j) = 1if A(i,j) # 0. Thefigure
below illustrates the representation for the sparse matrix of figure 2.1.

[]

(i) On acomputer with w bits per word, how much storage is needed to represent a sparse matrix Anxm
with t nonzero terms?

(it) Write an algorithm to add two sparse matrices A and C represented as above to obtain D = A + C.
How much time does your algorithm take ?

(i) Discuss the merits of this representation versus the representation of section 2.3. Consider space and
time requirements for such operations as random access, add, multiply, and transpose. Note that the
random access time can be improved somewhat by keeping another array Ra(i) such that Ra(i) = number

of nonzero termsin rows 1 throughi - 1.

18. A complex-valued matrix X is represented by a pair of matrices (A,B) where A and B contain real
values. Write a program which computes the product of two complex valued matrices (A,B) and (C,D),
where

(AB)* (CD)=(A+iB)* (C+iD)=(AC-BD) +i(AD + BC)

Determine the number of additions and multiplicationsif the matricesareall n = n.

19. How many values can be held by an array with dimensions A(0:n), B(-1:n,1:m), C(-n:0,2)?

20. Obtain an addressing formulafor the element A(i4,i, ...,i) in an array declared as A(l1:u;,l5 U, ...l

Up). Assume arow major representation of the array with one word per element and D the address of A
(Il il

21. Do exercise 20 assuming a column major representation. In this representation, a 2 dimensional
array is stored sequentially by column rather than by rows.

22. An m X nmatrix is said to have a saddle point if some entry A(i,j) isthe smallest valueinrow i and
the largest value in column j. Write a SPARKS program which determines the location of a saddle point
If one exists. What is the computing time of your method?

23. Given an array A(1:n) produce the array Z(1:n) such that Z(1) = A(n), Z(2) = A(n- 1), ..., Z(n-1) = A
(2), Z(n) = A(1). Use aminimal amount of storage.
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24. One possible set of axioms for an ordered list comes from the six operations of section 2.2.

structure ORDERED LI ST(at onrs)
decl are MILST( ) D li st
LEN(Ii st) D I nt eger
RET(I1ist,integer) Datom
STQ(list,integer, atom Dlist
I NS(Iist,integer, atomn Dlist

DEL(list,integer) D l'ist;

for all L elist, i.] €integer a,b £ atom| et
LEN(MILST) :: = 0; LEN(STQ(L,i,a)) :: =1 + LEN(L)
RET(MILST,j) :: = error

RET(STO(L,i,a),j) :: =

If I =) then a else RET(L,]j)

| NS(MTLST, j,b) :: = STOQMILST, |, b)

| NS(STQ(L,i,a),j,b) :: =

if i = then STQUINS(L,j,b), i + 1,a)
el se STOINS(L,j,b),i,a)

DEL(MTLST,j) :: = MILST
DEL(STO(L,i,a),j) :: =

if i =) then DEL(L,j)
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else if i >j) then STQUCDEL(L,j),1 - 1,a)
el se STQ(DEL(L,j),i,a)

end

end ORDERED LI ST

Use these axioms to describe thelist A= (a, b, ¢, d, €) and show what happens when DEL (A,2) is
executed.

25. There are a number of problems, known collectively as "random walk" problems which have been of
long standing interest to the mathematical community. All but the most simple of these are extremely
difficult to solve and for the most part they remain largely unsolved. One such problem may be stated as
follows:

A (drunken) cockroach is placed on a given square in the middle of atile floor in arectangular room of
size n x mtiles. The bug wanders (possibly in search of an aspirin) randomly from tile to tile throughout
the room. Assuming that he may move from his present tile to any of the eight tiles surrounding him
(unless heis against awall) with equal probability, how long will it take him to touch every tile on the
floor at least once?

Hard as this problem may be to solve by pure probability theory techniques, the answer is quite easy to
solve using the computer. The technique for doing sois called "simulation” and is of wide-scale usein
industry to predict traffic-flow, inventory control and so forth. The problem may be simulated using the
following method:

Anarray K&EUNT dimensioned N X M is used to represent the number of times our cockroach has
reached each tile on the floor. All the cells of thisarray areinitialized to zero. The position of the bug on
the floor is represented by the coordinates (IBUG,JBUG) and isinitialized by a data card. The 8 possible
moves of the bug are represented by thetileslocated at (IBUG + IMZ&VE(K), IBUG + IM&VE(K))
where 1 =K = 8 and:

| MBVE(1) = -1 IMZVE(1) = 1
| MBVE(2) = 0 IMZVE(2) = 1
| MBVE(3) = 1 IMZVE(3) = 1
| MBVE(4) = 1 IMBVE(4) = 0
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| MBVE(5) = 1 IMZVE(5) = -1
| MZVE(6) = 0 IMZVE(6) = -1
| MBVE(7) = -1 IMIVE(7) = -1
| MZVE(8) = -1 IMBVE(8) = 0

A randomwalk to one of the 8 given squares is ssmulated by generating a random value for K lying
between 1 and 8. Of course the bug cannot move outside the room, so that coordinates which lead up a
wall must be ignored and a new random combination formed. Each time a square is entered, the count
for that square isincremented so that a non-zero entry shows the number of times the bug has landed on
that square so far. When every square has been entered at |east once, the experiment is complete.

Write a program to perform the specified simulation experiment. Y our program MUST:
1) Handle values of N and M

2<N=40

2=M =20

2) Perform the experiment for

a) N =15, M = 15 starting point: (20,10)

b) N =39, M = 19 starting point: (1,1)

3) Have an iteration limit, that is, a maximum number of squares the bug may enter during the
experiment. This assures that your program does not get "hung” in an "infinite" loop. A maximum of
50,000 is appropriate for this lab.

4) For each experiment print: a) the total number of legal moves which the cockroach makes; b) the final
KZUNT array. Thiswill show the "density” of the walk, that is the number of times each tile on the
floor was touched during the experiment.

(Have an aspirin) This exercise was contributed by Olson.

26. Chess provides the setting for many fascinating diversions which are quite independent of the game
itself. Many of these are based on the strange "L -shaped" move of the knight. A classical exampleisthe
problem of the knight's tour, which has captured the attention of mathematicians and puzzle enthusiasts
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since the beginning of the eighteenth century. Briefly stated, the problem isto move the knight,
beginning from any given square on the chessboard, in such a manner that it travels successively to all
64 sguares, touching each square once and only once. It is convenient to represent a solution by placing
the numbers 1,2, ...,64 in the squares of the chessboard indicating the order in which the squares are
reached. Note that it is not required that the knight be able to reach theinitial position by one more
move, if thisis possible the knight's tour is called re-entrant.

One of the more ingenious methods for solving the problem of the knight'stour isthat given by J. C.
Warnsdorff in 1823. Hisrule is that the knight must always be moved to one of the squares from which
there are the fewest exits to squares not already traversed.

The goal of this exercise isto write a computer program to implement Warnsdorff's rule. The ensuing
discussion will be much easier to follow, however, if the student will first try to construct a particular
solution to the problem by hand before reading any further.

The most important decisions to be made in solving a problem of this type are those concerning how the
dataisto be represented in the computer. Perhaps the most natural way to represent the chessboard is by

an 8 x 8 array B&#ARD as shown in the figure below. The eight possible moves of a knight on square
(5,3) are aso shown in the figure.

BEARD

1 2 3 4 5 6 7 8

file:///C|/E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book1/chap02.htm (35 of 37)7/3/2004 4:01:13 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 2: ARRAYS www.itdevelopteam.com
In general aknight at (1,J) may move to one of thesquares (1 - 2,J+ 1), (1-1,J+2), (1 +1J+2), (I +2,J
+1),(1+2J-1),(01+1J3-2),(1-13-2),(l-2J-1). Notice, however that if (1,J) islocated near one of
the edges of the board, some of these possibilities could move the knight off the board, and of course
thisis not permitted. The eight possible knight moves may conveniently be represented by two arrays
KTMzV1 and KTMV 2 as shown below.

KTMzV1  KTMzV2

-2 1
-1 2
1 2
2 1
2 -1
1 -2
-1 -2
-2 -1

Then aknight at (1,J) may moveto (I + KTMzV1(K), J + KTMiV 2(K)), where K is some value
between 1 and 8, provided that the new square lies on the chessboard.

Below is adescription of an agorithm for solving the knight's tour problem using Warnsdorff's rule. The
data representation discussed in the previous section is assumed.

a. [Initialize chessboard] For 1 = 1,J = 8 set B&#ARD(1,J) = 0.

b. [Set starting position] Read and print 1,J and then set B:ZARD(1,J) to 1.

c. [Loop] For 2 = M = 64 do steps d through g.

d. [Form set of possible next squares] Test each of the eight squares one knight's move away from (l,J)
and form alist of the possibilities for the next square (NEXTI(L), NEXTJ(L)). Let NP2S be the number
of possibilities. (That is, after performing this step we will have NEXTI(L) =1 + KTM&V 1(K) and

NEXTJL) = J + KTM:izV 2(K), for certain values of K between 1 and 8. Some of the squares (I + KTM
2V 1(K), J + KTM&ZV2(K)) may be impossible for the next move either because they lie off the
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chessboard or because they have been previously occupied by the knight--i.e., they contain a nonzero
number. In every case we will have 0 = NP&S = 8.)

e. [Test special cases| If NP&S = 0 the knight's tour has come to a premature end; report failure and then
go to step h. If NP&#S = 1 there is only one possibility for the next move; set MIN = 1 and go right to

step g.

f. [Find next square with minimum number of exits] For 1 = L = NP&S set EXITS(L) to the number of
exits from square (NEXTI(L),NEXTJ(L)). That is, for each of the values of L examine each of the next
squares (NEXTI(L) + KTM&V1(K), NEXTJL) + KTMzV 2(K)) to seeif it isan exit from NEXTI(L),
NEXTJ(L)), and count the number of such exitsin EXITS(L). (Recall that asquareisan exit if it lieson
the chessboard and has not been previously occupied by the knight.) Finally, set MIN to the location of
the minimum value of EXITS. (There may be more than one occurrences of the minimum value of
EXITS. If this happens, it is convenient to let MIN denote the first such occurrence, although it is
important to realize that by so doing we are not actually guaranteed of finding a solution. Nevertheless,
the chances of finding a complete knight's tour in this way are remarkably good, and that is sufficient for
the purposes of this exercise.)

g. [Moveknight] Set | = NEXTI(MIN), J= NEXTJMIN) and B&ARD(I,J) = M. (Thus, (I,J) denotes the
new position of the knight, and BZARD(l,J) records the move in proper sequence.)

h. [Print] Print out BiZARD showing the solution to the knight's tour, and then terminate the algorithm.

The problem is to write a program which corresponds to this algorithm. This exercise was contributed by
L egenhausen and Rebman.

Goto Chapter 3  Back to Table of Contents
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« m )
CHAPTER 3: STACKS AND QUEUES

3.1 FUNDAMENTALS

Two of the more common data objects found in computer algorithms are stacks and queues. They arise
so often that we will discuss them separately before moving on to more complex objects. Both these data
objects are special cases of the more general data object, an ordered list which we considered in the
previous chapter. Recall that A = (a4, ay, -..,a,), iISan ordered list of [_|elements. The a arereferred to
as atoms which are taken from some set. The null or empty list has n = 0 elements.

A stack isan ordered list in which al insertions and deletions are made at one end, called the top. A
gueueis an ordered list in which all insertions take place at one end, the rear, while all deletions take
place at the other end, the front. Given astack S= (a4, ...a,,) then we say that a, is the bottommost

element and element g; is on top of element g; _ 1, 1 <i = n. When viewed as a queue with a,, as the rear
element one saysthat a;, ; isbehind &, 1 = i< n.

[]

Figure 3.1

The restrictions on a stack imply that if the elements A,B,C,D,E are added to the stack, in that order, then
the first element to be removed/deleted must be E. Equivalently we say that the last"element to be
inserted into the stack will be the first to be removed. For this reason stacks are sometimes referred to as
Last In First Out (LIFO) lists. The restrictions on a queue require that the first element which isinserted
into the queue will be the first one to be removed. Thus A isthefirst letter to be removed, and queues
areknown as First In First Out (FIFO) lists. Note that the data object queue as defined here need not
necessarily correspond to the mathematical concept of queue in which the insert/delete ru les may be
different.

One natural example of stacks which arisesin computer programming is the processing of subroutine
calls and their returns. Suppose we have a main procedure and three subroutines as below:

| proc MAIN]| | proc AL | | proc A2 | | proc A3 |
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| call Al | | call A2 | | <call A3 | |

| end | | end | | end | | end |
Figure 3.2. Sequence of subroutine calls

The MAIN program calls subroutine A1. On completion of Al execution of MAIN will resume at
location r. The addressr is passed to Al which savesit in some location for later processing. Al then
invokes A2 which in turn calls A3. In each case the calling procedure passes the return address to the
called procedure. If we examine the memory while A3 is computing there will be an implicit stack which
looks like

(q,r,st).

Thefirst entry, q, is the address in the operating system where MAIN returns control. This list operates
as a stack since the returns will be made in the reverse order of the calls. Thust is removed before s, s
beforer and r before g. Equivalently, this means that A3 must finish processing before A2, A2 before Al,
and Al before MAIN. Thislist of return addresses need not be maintained in consecutive locations. For
each subroutine there is usually a single location associated with the machine code which is used to
retain the return address. This can be severely limiting in the case of recursive calls and re-entrant
routines, since every time we call a subroutine the new return address wipes out the old one. For
example, if weinserted acall to A1 within subroutine A3 expecting the return to be at location u, then at
execution time the stack would become (qg,u,s,t) and the return address r would be lost. When recursion
isallowed, it isno longer adequate to reserve one location for the return address of each subroutine.
Since returns are made in the reverse order of calls, an elegant and natural solution to this subroutine
return problem is afforded through the explicit use of a stack of return addresses. Whenever areturnis
made, it is to the top address in the stack. Implementing recursion using a stack is discussed in Section
4.10.

Associated with the object stack there are several operations that are necessary:
CREATE (S which creates Sas an empty stack;

ADD (i, which inserts the element i onto the stack Sand returns the new stack;
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DELETE (S which removes the top element of stack Sand returns the new stack;
TOP (S which returns the top element of stack S
ISEMTS (S which returnstrueif Sisempty elsefalse;

These five functions constitute aworking definition of a stack. However we choose to represent a stack,
it must be possible to build these operations. But before we do this let us describe formally the structure
STACK.

structure STACK (item

1 decl are CREATE ( ) D st ack

2 ADD (item stack) D stack

3 DELETE (st ack) D st ack

4 TOP (stack) Ditem

5 | SEMIS (st ack) D bool ean;

6 for all S & stack, 1| £ item]let

7 | SEMIS ( CREATE) o= true
8 | SEMIS (ADD (i, S)) ;= fal se
9 DELETE ( CREATE) = error
10 DELETE (ADD (i, S)) 1 =S

11 TOP( CREATE) ». = error
12 TOP(ADD(i , S)) R

13 end
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The five functions with their domains and ranges are declared in lines 1 through 5. Lines 6 through 13
are the set of axioms which describe how the functions are related. Lines 10 and 12 are the essential
ones which define the last-in-first-out behavior. The above definitions describe an infinite stack for no
upper bound on the number of elementsis specified. Thiswill be dealt with when we represent this
structure in a computer.

The simplest way to represent a stack is by using a one-dimensional array, say STACK(1:n), wherenis
the maximum number of allowable entries. The first or bottom element in the stack will be stored at
STACK(1), the second at STACK(2) and thei-th at STACK(i). Associated with the array will be a
variable, top, which points to the top element in the stack. With this decision made the following
implementations result:

CREATE ( ) decl are STACK(1:n): top L0

| SEMTS(STACK) :: = if top = 0 then true
el se fal se

TOP( STACK)

if top = 0 then error
el se STACK(t op)

The implementations of these three operations using an array are so short that we needn't make them
Separate procedures but can just use them directly whenever we need to. The ADD and DELETE
operations are only a bit more complex.

procedure ADD (item STACK, n, top)

/linsert iteminto the STACK of maxi mum size n; top is the nunber
of elenents curently in STACK//

if top = n then call STACK FULL

t op D top + 1

STACK (top) [_litem
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end ADD
procedure DELETE (item STACK, top)
//renoves the top el enent of STACK and stores it in item

unl ess STACK is enpty//
if top L]0 then call STACK EMPTY
itemD STACK (top)

t op D top - 1
end DELETE

These two procedures are so simple that they perhaps need no more explanation. Procedure DELETE
actually combines the functions TOP and DELETE. STACK_FULL and STACK_EMPTY are
procedures which we leave unspecified since they will depend upon the particular application. Often a
stack full condition will signal that more storage needs to be allocated and the program re-run. Stack
empty is often ameaningful condition. In Section 3.3 we will see avery important computer application
of stacks where stack empty signals the end of processing.

The correctness of the stack implementation above may be established by showing that in this
implementation, the stack axioms of lines 7-12 of the stack structure definition are true. Let us show this
for the first three rules. The remainder of the axioms can be shown to hold similarly .

@) line 7. ISEMTY CREATE):: =true

Since CREATE resultsin top being initialized to zero, it follows from the implementation of ISEMTS
that ISEMTSCREATE):: = true.

(i1) line 8: ISEMTYADD(i,9)):: =false

The value of top is changed only in procedures CREATE, ADD and DELETE. CREATE initializes top
to zero while ADD incrementsit by 1 so long astop isless than n (thisis necessary because we can
implement only afinite stack). DELETE decreases top by 1 but never allows its value to become less
than zero. Hence, ADD(i,S) either resultsin an error condition (STACK_FULL), or leaves the value of
top > 0. Thisthen impliesthat ISEMTSADD(i,S)):: = false.

(iii) line 9: DELETE(CREATE):: = error
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Thisfollows from the observation that CREATE sets top = 0 and the procedure DELETE signals the
error condition STACK_EMPTY when top = 0.

Queues, like stacks, also arise quite naturally in the computer solution of many problems. Perhaps the
most common occurrence of a queue in computer applicationsis for the scheduling of jobs. In batch
processing the jobs are "queued-up” as they are read-in and executed, one after another in the order they
were received. Thisignores the possible existence of priorities, in which case there will be one queue for
each priority.

As mentioned earlier, when we talk of queues we talk about two distinct ends: the front and the rear.
Additions to the queue take place at the rear. Deletions are made from the front. So, if ajob is submitted
for execution, it joins at the rear of the job queue. The job at the front of the queue is the next one to be
executed. A minimal set of useful operations on a queue includes the following:

CREATEQ(Q) which creates Q as an empty queue;

ADDQ(i,Q) which adds the element i to the rear of a queue and returns the new queue;

DELETEQ(Q) which removes the front element from the queue Q and returns the resulting queue;
FRONT(Q) which returns the front element of Q;

ISEMTQ(Q) which returnstrueif Q is empty else false.

A complete specification of this data structureis

structure QUEUE (item

1 decl are CREATEQ ) D gueue

2 ADDQ i t em queue) D queue
3 DELETEQ( queue) D gueue
4 FRONT( queue) [ Jitem

5 | SEMI'Q( queue) D bool ean;
6 for all Q& queue, | itemlet
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7 | SEMTQ( CREATEQ) ;. = true

8 | SEMTQ( ADDQ(i , Q) = fal se

9 DELETEQ CREATEQ :: = error

10 DELETEQ( ADDQ(i, Q):: =

11 i f | SEMTQ(Q then CREATEQ

12 el se ADDQ i, DELETEQ( Q)

13 FRONT( CREATEQ) .. = error

14 FRONT(ADDQi,Q) :: =

15 I f ISEMTQ Q then i else FRONT(Q
16 end

17 end QUEUE
The axiom of lines 10-12 shows that deletions are made from the front of the queue.

The representation of afinite queue in sequential locations is somewhat more difficult than a stack. In
addition to aone dimensional array Q(1:n), we need two variables, front and rear. The conventions we
shall adopt for these two variables are that front is always 1 less than the actual front of the queue and
rear always pointsto the last element in the queue. Thus, front = rear if and only if there are no
elementsin the queue. The initial condition thenisfront = rear = 0. With these conventions, let ustry
an example by inserting and deleting jobs, J;,from ajob queue

Q1) (2) (3) (4) (5 (6) (7) ... Remarks
front rear
0 0 gueue enpty Initial
0 1 JI Job 1 joins

Q
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0 2 J1 J2 Job 2 joins
Q

0 3 J1 J2 J3 Job 3 joins
Q

1 3 J2 J3 Job 1
| eaves Q

1 4 J2 J3 J4a Job 4 joins
Q

2 4 J3 J4 Job 2
| eaves Q

With this scheme, the following implementation of the CREATEQ, ISEMTQ, and FRONT operations
results for a queue with capacity n:

CREATEQ Q declare Ql:n); front D rear D 0

| SEMTQ Q) If front = rear then true

el se fal se

FRONT( Q I f ISEMIQ(Q then error

el se Qfront + 1)

The following algorithms for ADDQ and DELETEQ result:

procedure ADDQ(item Q n, rear)

/linsert iteminto the queue represented in QIl:n)//

if rear = n then call QUEUE FULL
rear || rear + 1

Q(rear)D I tem
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end ADDQ
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procedure DELETEQ(item Q front, rear)
//del ete an el enent froma queue//

If front = rear then call QUEUE EMPTY
front | front + 1

itemD Q front)
end DELETEQ

The correctness of thisimplementation may be established in amanner akin to that used for stacks. With
this set up, notice that unless the front regularly catches up with the rear and both pointers are reset to
zero, then the QUEUE_FULL signal does not necessarily imply that there are n elementsin the queue.
That is, the queue will gradually move to the right. One obvious thing to do when QUEUE_FULL is
signaled is to move the entire queue to the left so that the first element isagain at Q(1) and front = 0.
Thisistime consuming, especially when there are many elementsin the queue at the time of the
QUEUE_FULL signa.

Let uslook at an example which shows what could happen, in the worst case, if each time the queue
becomes full we choose to move the entire queue left so that it starts at Q(1). To begin, assume there are
n elements J4, ...,J,, in the queue and we next receive alternate requests to delete and add elements. Each

time anew element is added, the entire queue of n - 1 elementsis moved |eft.

[]

Figure 3.3

A more efficient queue representation is obtained by regarding the array Q(1:n) ascircular. It now
becomes more convenient to declare the array as Q(0:n - 1). When rear = n - 1, the next element is
entered at Q(0) in case that spot isfree. Using the same conventions as before, front will always point
one position counterclockwise from the first element in the queue. Again, front = rear if and only if the
gueue is empty. Initially we have front = rear = 1. Figure 3.4 illustrates some of the possible
configurations for acircular queue containing the four elements J1-J4 with n > 4. The assumption of
circularity changesthe ADD and DELETE algorithms dlightly. In order to add an element, it will be
necessary to move rear one position clockwisg, i.e.,

if rear = n - 1 then rear DO
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el se rear D rear + 1.

[]

Figure 3.4: Circular queue of n elements and four jobs J1, J2, J3, J4

Using the modul o operator which computes remainders, thisisjust rear D (rear + 1)mod n. Smilarly,
it will be necessary to move front one position clockwise each time a deletion is made. Again, using the

modul o operation, this can be accomplished by front D (front + )mod n. An examination of the
algorithms indicates that addition and deletion can now be carried out in a fixed amount of time or O(1).

procedure ADDQ(item Q n, front, rear)
/linsert itemin the circular queue stored in O0:n - 1);
rear points to the last itemand front is one position

countercl ockwi se fromthe first itemin Q/

rear D (rear + I)nmod n /| advance rear cl ockw se//

If front = rear then call QUEUE- FULL

Qrear) Ditem /linsert newiteni/

end ADDQ

procedure DELETEQitem Q n, front, rear)

//renmoves the front el enent of the queue QO0:n - 1)//

If front = rear then call QUEUE- EMPTY

front D (front + 1)nod n [l advance front cl ockw se//
itemD Q front) //set itemto front of queue//
end DELETEQ
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One surprising point in the two algorithms is that the test for queue full in ADDQ and the test for queue
empty in DELETEQ are the same. In the case of ADDQ, however, when front = rear thereis actually
one space free, i.e. Q(rear), since the first element in the queue is not at Q(front) but is one position
clockwise from this point. However, if we insert an item here, then we will not be able to distinguish
between the cases full and empty, since thisinsertion would leave front = rear. To avoid this, we signal
gueue-full thus permitting a maximum, of n - 1 rather than n elements to be in the queue at any time.
One way to use al n positions would be to use another variable, tag, to distinguish between the two
situations, i.e. tag = 0 if and only if the queue is empty. This would however slow down the two
algorithms. Since the ADDQ and DELETEQ algorithms will be used many times in any problem
involving queues, the loss of one queue position will be more than made up for by the reduction in
computing time.

The procedures QUEUE FULL and QUEUE_EMPTY have been used without explanation, but they are
similar to STACK_FULL and STACK_EMPTY . Their function will depend on the particular
application.

3.2 A MAZING PROBLEM

The rat-in-a-maze experiment is a classical one from experimental psychology. A rat (or mouse) is
placed through the door of alarge box without atop. Walls are set up so that movements in most
directions are obstructed. Therat is carefully observed by several scientists as it makes its way through
the maze until it eventually reaches the other exit. Thereisonly one way out, but at the end isanice
hunk of cheese. Theideaisto run the experiment repeatedly until the rat will zip through the maze
without taking a single false path. The trials yield hislearning curve.

We can write a computer program for getting through a maze and it will probably not be any smarter
than the rat on itsfirst try through. It may take many false paths before finding the right one. But the
computer can remember the correct path far better than the rat. On its second try it should be able to go
right to the end with no false paths taken, so there is no sense re-running the program. Why don't you sit
down and try to write this program yourself before you read on and look at our solution. Keep track of
how many times you have to go back and correct something. This may give you an idea of your own
learning curve as we re-run the experiment throughout the book.

L et us represent the maze by atwo dimensional array, MAZE(1:m, 1:n), whereavaueof 1 impliesa
blocked path, while a 0 means one can walk right on through. We assume that the rat starts at MAZE
(1,1) and the exit isat MAZE(m,n).

[]

Figure 3.5
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With the maze represented as a two dimensional array, the location of the rat in the maze can at any time
be described by the row, i, and column, j of its position. Now let us consider the possible moves the rat
can make at some point (i,j) in the maze. Figure 3.6 shows the possible moves from any point (i,j). The
position (i,j) is marked by an X. If all the surrounding squares have a 0 then the rat can choose any of
these eight squares as its next position. We call these eight directions by the names of the points on a
compass north, northeast, east, southeast, south, southwest, west, and northwest, or N, NE, E, SE, S,
SW, W, NW.

[]
Figure 3.6

We must be careful here because not every position has eight neighbors. If (i,j) ison a border where
eitheri =1orm, orj =1or n, then less than eight and possibly only three neighbors exist. To avoid
checking for these border conditions we can surround the maze by a border of ones. The array will
therefore be declared as MAZE(O:m+ 1,0:n + 1).

Another device which will simplify the problem is to predefine the possible directionsto movein a
table, MOV E(1:8.1:2), which has the values

MOVE 1 2

(1) -1 O north

(2) -1 1 northeast
(3) 0 1 east

(4) 1 1 sout heast
(5) 1 0O south

(6) 1 -1 southwest
(7) 0 -1 west

(8) -1 -1 northwest

By equating the compass names with the numbers 1,2, ...,8 we make it easy to move in any direction. If
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we are at position (i,J) in the maze and we want to find the position (g,h) which is southwest of i,j, then
we set

gL_li + MOVE(6,1); H_lj + MOVE(®6,2)
For example, if we are at position (3,4), then position (3 + 1 =4, 4 +(-1) = 3) is southwest.

Aswe move through the maze we may have the chance to go in several directions. Not knowing which
one to choose, we pick one but save our current position and the direction of the last movein alist. This
way if we have taken afalse path we can return and try another direction. With each new location we
will examine the possibilities, starting from the north and looking clockwise. Finally, in order to prevent
us from going down the same path twice we use another array MARK(0:m + 1,0:n + 1) whichisinitialy
zero. MARK(i,j) is set to 1 once we arrive at that position. We assume MAZE(m,n) = 0 as otherwise
there is no path to the exit. We are now ready to write afirst pass at an algorithm.

set list to the naze entrance coordi nates and direction north;

while list is not enpty do

(i,], nov) Dcoordi nates and direction fromfront of Iist

whil e there are nore noves do

(g, h) [] coordi nates of next nove

if (g,h) = (mn) then success

i f MAZE (g,h) =0 //the nove is legal//

and MARK (g,h) =0 //we haven't been here before//
then [ MARK (g, h) [] 1

add (i,j, nov) to front of I|ist

(i, j.mv) L] (g h nuil)]

end

end
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print no path has been found

Thisis not a SPARKS program and yet it describes the essential processing without too much detail.
The use of indentation for delineating important blocks of code plus the use of SPARKS key words
make the looping and conditional tests transparent.

What remains to be pinned down? Using the three arrays MAZE, MARK and MOV E we need only
specify how to represent the list of new triples. Since the algorithm calls for removing first the most
recently entered triple, thislist should be a stack. We can use the sequential representation we saw
before. All we need to know now is a reasonable bound on the size of this stack. Since each position in
the maze is visited at most once, at most mn elements can be placed into the stack. Thus mn locationsis
a safe but somewhat conservative bound. In the following maze

[]

the only path has at most [mv2l (n+ 1) positions. Thus mn is not too crude a bound. We are now ready to
give a precise maze agorithm.

procedure PATH (MAZE, MARK, m n, MOE, STACK)

/1A binary matrix MAZE (O0m+ 1, O0:n + 1) holds the maze.

MARK (O:m+ 1, O:n + 1) is zero in spot (i,j) if MAZE (i,j) has not
yet been reached. MOVE (8,2) is a table used to change coordi nates
(i,j) to one of 8 possible directions. STACK (mm, 3) holds the
current path// MARK (1, 1) D 1

(STACK(1, 1), STACK(1, 2), STACK(1,3)) L] (1,1,2):top L] 1

while top# 0 do

(i,j,mov) L] (STACK(top, 1), STACK(top, 2), STACK(top,3) + 1)

top L]top - 1

while mov [ 8 do

file:/lIC{[E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book 1/chap03.htm (14 of 32)7/3/2004 4:01:25 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 3: STACKS AND QUEUES WWW. itdevelopteam.com

gDi + MOVE (nov, 1); hDj + MOVE( nov, 2)
if g =mand h =n

then [for letotop do /1 goal /]l
print (STACK(p, 1), STACK(p, 2)

end

print(i,j); print(mn);return]

I f MAZE(g,h) = 0 and MARK(g,h) =0

t hen[ MARK( g, h) Dl

tothop + 1

( STACK(t op, 1), STACK(t op, 2) , STACK(t op, 3)) ||
(i,j,nnov) //save (i,j) as part of current path//
m)vDO; i Dg; j Dh]

rvam)v+1 //point to next direction//
end

end

print ('no path has been found')

end PATH

Now, what can we say about the computing time for this algorithm? It is interesting that even though the
problem is easy to grasp, it isdifficult to make any but the most trivial statement about the computing

time. The reason for thisis because the number of iterations of the main while loop is entirely dependent
upon the given maze. What we can say is that each new position (i,j) that is visited gets marked, so paths
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are never taken twice. There are at most eight iterations of the inner while loop for each marked
position. Each iteration of the inner while loop takes a fixed amount of time, O(1), and if the number of
zerosin MAZE is zthen at most z positions can get marked. Since z is bounded above by mn, the

computing time is bounded by D (Inactual experiments, however, the rat may be inspired by the
watching psychologist and the invigorating odor from the cheese at the exit. It might reach its goal by
examining far fewer paths than those examined by algorithm PATH. This may happen despite the fact
that the rat has no pencil and only avery limited mental stack. It is difficult to incorporate the effect of
the cheese odor and the cheering of the psychologists into a computer algorithm.) The array MARK can
be eliminated altogether and MAZE(i,j) changed to 1 instead of setting MARK(i,j) to 1, but this will
destroy the original maze.

3.3 EVALUATION OF EXPRESSIONS

When pioneering computer scientists conceived the idea of higher level programming languages, they
were faced with many technical hurdles. One of the biggest was the question of how to generate
machine language instructions which would properly evaluate any arithmetic expression. A complex
assignment statement such as

x_IaB** c+D*E-A*C
(3.1)

might have several meanings; and even if it were uniquely defined, say by afull use of parentheses, it
still seemed aformidable task to generate a correct and reasonabl e instruction sequence. Fortunately the
solution we have today is both elegant and ssimple. Moreover, it is so simple that this aspect of compiler
writing isreally one of the more minor issues.

An expression is made up of operands, operators and delimiters. The expression above hasfive
operands: A,B,C,D, and E. Though these are all one letter variables, operands can be any legal variable
name or constant in our programming language. In any expression the values that variables take must be
consistent with the operations performed on them. These operations are described by the operators. In
most programming languages there are several kinds of operators which correspond to the different
kinds of data a variable can hold. First, there are the basic arithmetic operators. plus, minus, times,
divide, and exponentiation (+,-,*,/,**). Other arithmetic operators include unary plus, unary minus and
mod, ceil, and floor. The latter three may sometimes be library subroutines rather than predefined

operators. A second class are the relational operators: D These are usually defined to work for
arithmetic operands, but they can just as easily work for character string data. (CAT' isless than 'DOG'
since it precedes 'DOG' in aphabetical order.) The result of an expression which contains relational
operatorsis one of the two constants: true or false. Such all expression is called Boolean, named after
the mathematician George Boole, the father of symbolic logic.
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The first problem with understanding the meaning of an expression is to decide in what order the
operations are carried out. This means that every language must uniquely define such an order. For
instance, if A=4,B=C=2,D =E =3, thenineg. 3.1 we might want X to be assigned the value

4/ (2 ** 2) + (3 * 3) - (4 * 2)

(4/4) + 9 - 8

= 2.

However, the true intention of the programmer might have been to assign X the value
(4/2) ** (2 + 3) * (3 - 4) * 2

— (4/2) % Bx _1 * 2

= (2%*5)* -2
= 32% -2
= -64.

Of course, he could specify the latter order of evaluation by using parentheses:

xLav ey c+oy* E-a)*C).

To fix the order of evaluation, we assign to each operator a priority. Then within any pair of parentheses
we understand that operators with the highest priority will be evaluated first. A set of sample priorities
from PL/I isgivenin Figure 3.7.

[]

Figure 3.7. Priority of arithmetic, Boolean and relational operators

Notice that all of the relational operators have the same priority. Similarly, exponentiation, unary minus,
unary plus and Boolean negation all have top priority. When we have an expression where two adjacent
operators have the same priority, we need aruleto tell us which oneto perform first. For example, do
we want the value of - A ** B to be understood as (-A) ** B or -(A ** B)? Convince yourself that there
will be adifference by trying A =-1 and B = 2. From algebrawe normally consider A** B** CasA**
(B** C) and so we rule that operatorsin priority 6 are evaluated right-to-left. However, for expressions
such as A* B/ C we generally execute left-to-right or (A * B)/C. So werule that for all other priorities,
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evaluation of operators of the same priority will proceed left to right. Remember that by using
parentheses we can override these rules, and such expressions are always evaluated with the innermost
parenthesized expression first.

Now that we have specified priorities and rules for breaking ties we know how XD AB**C+D*E-
A* C will be evaluated, namely as

xL_l(a/B** ) + (D* E)) - (A* C).

How can a compiler accept such an expression and produce correct code? The answer is given by
reworking the expression into aform we call postfix notation. If e isan expression with operators and
operands, the conventional way of writing e is called infix, because the operators come in-between the
operands. (Unary operators precede their operand.) The postfix form of an expression calls for each
operator to appear after its operands. For example,

infix: A* B/C has postfix: AB * C/.

If we study the postfix form of A* B/C we see that the multiplication comesimmediately after its two
operands A and B. Now imagine that A * B is computed and stored in T. Then we have the division
operator, /, coming immediately after itstwo arguments T and C.

Let uslook at our previous example
infix: AB** C+D*E-A*C
postfix: ABC ** [IDE* + AC* -

and trace out the meaning of the postfix.

Every time we compute avalue let us store it in the temporary location T, i D 1. Reading left to right,
the first operation is exponentiation:

Oper ati on Postfi x
T, LB **cC AT,/ DE * + AC * -
T2|:|A/Tl T2DE*+AC*-
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T, LIp* E T,Ts + AC * -

T, LT, + T3 T,AC* -

= Lla*c T,Ts -

Te LTy - T5 Te

So Tg will contain the result. Notice that if we had parenthesized the expression, this would change the
postfix only if the order of normal evaluation were altered. Thus, A/ (B** C)+ (D * E) - A* Cwill

have the same postfix form as the previous expression without parentheses. But (A/ B) ** (C+ D) * (E -
A)* Cwill have the postfix form AB/ CD + ** EA-* C*.

Before attempting an algorithm to translate expressions from infix to postfix notation, let us make some
observations regarding the virtues of postfix notation that enable easy evaluation of expressions. To
begin with, the need for parenthesesis eliminated. Secondly, the priority of the operatorsis no longer
relevant. The expression may be evaluated by making aleft to right scan, stacking operands, and
evaluating operators using as operands the correct number from the stack and finally placing the result
onto the stack. This evaluation process is much simpler than attempting a direct evaluation from infix
notation.

procedure EVAL (E)

/l eval uate the postfix expression E. It is assuned that the

| ast character in Eis an ' ™', A procedure NEXT-TCKEN is

used to extract fromE the next token. A token is either a
operand, operator, or '*'. A one dinensional array STACK(l:n) is

used as a stack//

top L10 // initialize STACK//

| oop

x ] NEXT- TOKEN (E)
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case
X ="%" 1 return//answer is at top of stack//
X I's an operand: call ADD(x, STACK, n, top)

el se: renove the correct nunber of operands

for operator x from STACK, perform

t he operation and store the result, if

any, onto the stack

end

forever

end EVAL

To see how to devise an algorithm for tranglating from infix to postfix, note that the order of the
operands in both formsisthe same. In fact, it is simple to describe an algorithm for producing postfix
from infix:

1) fully parenthesize the expression;

2) move all operators so that they replace their corresponding right parentheses,

3) delete all parentheses.

For example, AAB** C+ D * E- A* C when fully parenthesized yields

[]

The arrows point from an operator to its corresponding right parenthesis. Performing steps 2 and 3 gives
ABC** [DE* + AC* -,

The problem with this as an algorithm is that it requires two passes: the first one reads the expression
and parenthesizes it while the second actually moves the operators. As we have already observed, the
order of the operandsisthe samein infix and postfix. So as we scan an expression for the first time, we
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can form the postfix by immediately passing any operands to the output. Then it isjust a matter of
handling the operators. The solution is to store them in a stack until just the right moment and then to
unstack and pass them to the outpui.

For example, sincewewant A+ B * Ctoyield ABC * + our algorithm should perform the following
sequence of stacking (these stacks will grow to the right):

Next Token Stack Qutput

none enpty none
A enpty A
+ + A
B + AB

At this point the algorithm must determineif * gets placed on top of the stack or if the + gets taken off.
Since * has greater priority we should stack * producing

* + * AB

C + * ABC
Now the input expression is exhausted, so we output all remaining operators in the stack to get
ABC* +

For another example, A* (B + C) * D hasthe postfix form ABC + * D *, and so the algorithm should
behave as

Next Token Stack Qutput

none enpty none

A enpty A
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* * A
( *( A
B *( AB
+ *(+ AB
C *(+ ABC

At this point we want to unstack down to the corresponding left parenthesis, and then delete the | eft and
right parentheses; this gives us:

) * ABC +
* * ABC + *

D * ABC + * D
done enpty ABC + * D *

These examples should motivate the following hierarchy scheme for binary arithmetic operators and
delimiters. The general case involving all the operators of figure 3.7 isleft as an exercise.

Synbol In-Stack Priority In-Comng Priority
) - -
* 3 4
* 2 2
binary + - 1 1
( 0 4

Figure 3.8 Priorities of Operators for Producing Postfix

The rule will be that operators are taken out of the stack aslong as their in-stack priority, isp, is greater
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than or equal to the in-coming priority, icp of the new operator. |SP(X) and | CP(X) are functions which
reflect the table of figure 3.8.

procedure POSTFI X (E)

/'l convert the infix expression E to postfix. Assune the | ast

character of Eis a ' ™', which will also be the |ast character of

the postfix. Procedure NEXT-TOKEN returns either the next

operator, operand or delimter--whichever conmes next.

STACK (1:n) is used as a stack and the character '-=' wth

|SP('-=") = -1 1is used at the bottomof the stack. ISP and |ICP

are functions.//

STACK(1) [l == top []1 /linitialize stack//
| oop

x || NEXT- ToKEN( E)

case

X = """ while top > 1 do //enpty the stack//

print (STACK(top));top [] top - 1

end

print (' =)

return

X 1S an operand: print (x)

X = ')': while STACK(top) # '(' do// unstack until '('//
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print (STACK(top));top D top - 1

end

tothop— 1 [ldelete' )" /]

‘el se while | SP(STACK(top)) L] 1cP(x) do

print (STACK(top)); top Lltop - 1

end

cal | ADI x, STACK, n, t op) /[linsert x in STACK//
end

forever

end POSTFI X

As for the computing time, the algorithm makes only one pass across the input. If the expression hasn
symbols, then the number of operations is proportional to some constant times n. The stack cannot get
any deeper than the number of operators plus 1, but it may achieve that bound asit doesfor A+ B* C
** D

3.4 MULTIPLE STACKS AND QUEUES

Up to now we have been concerned only with the representation of a single stack or a single queue in the
memory of acomputer. For these two cases we have seen efficient sequential data representations. What
happens when a data representation is needed for several stacks and queues? Let us once again limit
ourselves, to sequential mappings of these data objects into an array V(1:m). If we have only 2 stacksto
represent. then the solution is simple. We can use V(1) for the bottom most element in stack 1 and V(m)
for the corresponding element in stack 2. Stack 1 can grow towards V(m) and stack 2 towards V(1). Itis
therefore possible to utilize efficiently al the available space. Can we do the same when more than 2
stacks are to be represented? The answer is no, because a one dimensional array has only two fixed
points V(1) and V(m) and each stack requires afixed point for its bottommost element. When more than
two stacks, say n, are to be represented sequentially, we can initially divide out the available memory V
(1:m) into n segments and allocate one of these segments to each of the n stacks. Thisinitial division of V
(1:m) into segments may be done in proportion to expected sizes of the various stacks if the sizes are
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known. In the absence of such information, V(1:m) may be divided into equal segments. For each stack i
we shall use B(i) to represent a position one less than the position in V for the bottommost element of
that stack. T(i), 1 =i = n will point to the topmost element of stack i. We shall use the boundary condition
B(i) = T(i) iff thei'th stack isempty. If we grow thei'th stack in lower memory indexes than thei + 1'st,
then with roughly equal initial segments we have

B@)=T(@)=lmwnl(-1),1=i=n

(3.2)

astheinitial values of B(i) and T(i), (seefigure 3.9). Stack i, 1 =i = n can grow from B(i) + Lupto B(i +
1) before it catches up with thei + 1'st stack. It is convenient both for the discussion and the algorithms
to define B(n + 1) = m. Using this scheme the add and del ete algorithms become:

procedure ADD(i, X)

//add element X to the i'th stack, 1 =i = n//

if T(i) = B(i + 1) then call STACK-FULL (i)

T() LTy +1

v(T(i)) L] x //add X to the i'th stack//

end ADD

procedure DELETE(i, X)

/I del ete topnost el enent of stack i//

if T(i) = B(i) then call STACK-EMPTY(i)

x LI vr(iy)

T(i) LIty - 1

end DELETE

The algorithms to add and del ete appear to be asimple asin the case of only 1 or 2 stacks. Thisredlly is
not the case since the STACK_FULL condition in algorithm ADD does not imply that all mlocations of
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V arein use. In fact, there may be alot of unused space between stacksj andj + 1for 1=zj=nandj#i
(figure 3.10). The procedure STACK_FULL (i) should therefore determine whether there is any free
spacein V and shift stacks around so as to make some of this free space available to the i'th stack.

Several strategies are possible for the design of algorithm STACK_FULL. We shall discuss one strategy
in the text and look at some othersin the exercises. The primary objective of algorithm STACK_FULL
Isto permit the adding of elements to stacks so long as there is some free space in V. One way to
guarantee thisisto design STACK_FULL aong the following lines:

a) determinetheleast j, i < j = n such that there is free space between stacksj andj + 1, i.e, T(j) <B(j +
1). If thereissuch aj, then move stacksi + 1, i + 2, ...,j one position to the right (treating V(1) as
leftmost and VV(m) as rightmost), thereby creating a space between stacksi andi + 1.

b) if thereisnoj asin a), then look to the left of stack i. Find the largest j such that 1 =] <i and thereis
space between stacksjandj + 1,i.e., T(j) <B(j + 1). If thereissuch aj, then move stacksj + 1,) + 2, ...,
one space | eft creating a free space between stacksi andi + 1.

c) if thereisno | satisfying either the conditions of a) or b), then al m spaces of V are utilized and there
IS no free space.

[]

Figure 3.9 Initial configuration for n stacks in V(1:m). All stacks are empty and memory
is divided into roughly equal segments.

[]

Figure 3.10 Configuration when stack i meets with stack i + 1 but there is still free space
elsewherein V.

The writing of algorithm STACK_FULL using the above strategy is |eft as an exercise. It should be
clear that the worst case performance of this representation for the n stacks together with the above
strategy for STACK_FULL would be rather poor. In fact, in the worst case O(m) time may be needed
for each insertion (see exercises). In the next chapter we shall see that if we do not limit ourselvesto
sequential mappings of data objects into arrays, then we can obtain a data representation for m stacks
that has a much better worst case performance than the representation described here. Sequential
representations for n queues and other generalizations are discussed in the exercises.

EXERCISES

1. Consider arailroad switching network as below

file:///C|/E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book1/chap03.htm (26 of 32)7/3/2004 4:01:25 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 3: STACKS AND QUEUES

[]

Railroad cars numbered 1,2,3 ...,n are at the right. Each car is brought into the stack and removed at any
time. For instance, if n =3, we could move 1 in, move 2 in, move 3 in and then take the cars out
producing the new order 3,2,1. For n = 3 and 4 what are the possible permutations of the cars that can be
obtained? Are any permutations not possible?

www.itdevelopteam.com

2. Using a Boolean variable to distinguish between a circular queue being empty or full, write insert and
delete procedures.

3. Complete the correctness proof for the stack implementation of section 3.1.
4. Use the queue axioms to prove that the circular queue representation of section 3.1 is correct.

5. A double ended queue (deque) is alinear list in which additions and deletions may be made at either
end. Obtain a data representation mapping a deque into a one dimensional array. Write algorithms to add
and delete elements from either end of the deque.

6. [Mystery function] Let f be an operation whose argument and result is a queue and which is defined
by the axioms:

f (CREATEQ  :: = CREATEQ

f(ADDQ(i , q)) if | SEMIQ(q) then ADDQ(i, q)

el se ADDQ(FRONT(q), f(DELETEQ ADDQi,q))))
what doesf do?

7. A linear list is being maintained circularly in an array C(0: n - 1) with F and R set up asfor circular
queues.

a) Obtain aformulain termsof F, R and n for the number of elementsin thelist.
b) Write an algorithm to delete the k'th element in the list.
¢) Write an algorithm to insert an element Y immediately after the k'th element .

What is the time complexity of your algorithms for b) and c¢)?
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8. LetL = (a;,ay, ...,a,) bealinear list represented in the array V(1:n) using the mapping: the i'th element
of L isstored in V(i). Write an agorithm to make an inplace reversal of the order of elementsin V. |.e,,
the algorithm should transform V such that V(i) containsthe n - i + 1'st element of L. The only additional

space available to your algorithm is that for simple variables. The input to the algorithmisV and n. How
much time does your algorithm take to accomplish the reversal?

9. a) Find a path through the maze of figure 3.5.

b) Trace out the action of procedure PATH on the maze of figure 3.5. Compare thisto your own attempt
in a).

10. What is the maximum path length from start to finish in any maze of dimensionsn X m?
11. Write the postfix form of the following expressions:

) A** B** C

b)-A+B-C+D

C) A** -B+C

dA+B)*D+E/(F+A*D)+C

[]

12. Obtain isp and icp priorities for all the operators of figure 3.7 together with the delimiters'(',and’)'.
These priorities should be such that algorithm POSTFIX correctly generates the postfix form for al
expressions made up of operands and these operators and delimiters.

13. Usetheisp and icp priorities obtained in exercise 12 to answer the following:

a) In algorithm POSTFIX what is the maximum number of elements that can be on the stack at any time
if the input expression E has n operators and delimiters?

b) What isthe answer to a) if E contains no operators of priority 6, has n operators and the depth of
nesting of parenthesesis at most 6?

14. Another expression form that is easy to evaluate and is parenthesis free is known as prefix. In this
way of writing expressions, the operators precede their operands. For example:

I nfix prefix

file:///C|/E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book1/chap03.htm (28 of 32)7/3/2004 4:01:25 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 3: STACKS AND QUEUES WWW. itdevelopteam.com

A* BIC /* ABC
AAB** C+D*E- A*C - +A** BC* DE* AC
A* (B+CQQ/D- G -/* A + BCDG
Notice that the order of operands is not changed in going from infix to prefix .
a) What is the prefix form of the expressionsin exercise 11.

b) Write an algorithm to evaluate a prefix expression, E (Hint: Scan E right to left and assume that the
leftmost token of E is'™".)

¢) Write an algorithm to transform an infix expression E into its prefix equivalent. Assume that the input
expression E beginswith a'*" and that the prefix expression should begin with a'=".

What is the time complexity of your algorithms for b) and ¢)? How much space is needed by each of
these algorithms?

15. Write an agorithm to transform from prefix to postfix. Carefully state any assumptions you make
regarding the input. How much time and space does your algorithm take?

16. Do exercise 15 but this time for a transformation from postfix to prefix.

17. Write an agorithm to generate fully parenthesized infix expressions from their postfix form. What is
the complexity (time and space) of your algorithm?

18. Do exercise 17 starting from prefix form.

19. Two stacks are to be represented in an array V(1:m) as described in section 3.4. Write algorithms
ADD(i.X) and DELETE(i) to add X and delete an element from stack i, 1 =i = 2. Y our agorithms should
be able to add elements to the stacks so long as there are fewer than m elementsin both stacks together.

20. Obtain a data representation mapping a stack Sand a queue Q into asingle array V(1:n). Write
algorithms to add and delete elements from these two data objects. What can you say about the
suitability of your data representation?

21. Write a SPARKS agorithm implementing the strategy for STACK_FULL (i) outlined in section 3.4.
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22. For the ADD and DELETE algorithms of section 3.4 and the STACK_FULL (i) algorithm of
exercise 21 produce a sequence of adds and deletes that will require O(m) time for each add. Usen =2
and start from a configuration representing a full utilization of V(1:m).

23. It has been empirically observed that most programs that get close to using all available space
eventually run out of space. In the light of this observation, it seems futile to move stacks around
providing space for other stacksto grow inif thereis only alimited amount of space that isfree. Rewrite
the algorithm of exercise 21 so that the algorithm terminatesif there are fewer than C free spaces. C is
an empirically determined constant and is provided to the algorithm.

24. Another strategy for the STACK _FULL(i) condition of section 3.4 isto redistribute al the free space
in proportion to the rate of growth of individual stacks since thelast call to STACK_FULL. Thiswould
require the use of another array LT(1:n) where LT(j) isthe value of T(j) at the last call to

STACK_FULL. Then the amount by which each stack has grown since the last call isT(j) - LT(j). The
figurefor stack i isactualy T(i) - LT(i) + 1, since we are now attempting to add another element to i.

Write algorithm STACK _FULL (i) to redistribute all the stacks so that the free space between stacks |
and | + 1isin proportion to the growth of stack j since thelast call to STACK_FULL. STACK_FULL
(i) should assign at least 1 free location to stack i.

25. Design a data representation sequentially mapping n queuesinto all array V(1:m). Represent each
gueue as a circular queue within V. Write algorithms ADDQ, DELETEQ and QUEUE-FULL for this
representation.

26. Design a data representation, sequentially mapping n data objects into an array V(1:m). n, of these
data objects are stacks and the remaining n, = n - n, are queues. Write algorithms to add and delete

elements from these objects. Use the same SPACE_FULL algorithm for both types of data objects. This
algorithm should provide space for the i-th data object if there is some space not currently being used.
Note that a circular queue with space for r elements can hold only r - 1.

27. [Landweber]

People have spent so much time playing card games of solitaire that the gambling casinos are now
capitalizing on this human weakness. A form of solitaire is described below. Y our assignment is to write
a computer program to play the game thus freeing hours of time for people to return to more useful
endeavors.

To begin the game, 28 cards are dealt into 7 piles. The leftmost pile has 1 card, the next two cards, and
so forth up to 7 cards in the rightmost pile. Only the uppermost card of each of the 7 pilesisturned face
up. The cards are dealt |€eft to right, one card to each pile, dealing to one less pile each time, and turning
the first card in each round face up.
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On the top-most face up card of each pile you may build in descending sequences red on black or black
on red. For example, on the 9 of spades you may place either the 8 of diamonds or the 8 of hearts. All
face up cards on a pile are moved as a unit and may be placed on another pile according to the
bottommaost face up card. For example, the 7 of clubs on the 8 of hearts may be moved as a unit onto the
9 of clubs or the 9 of spades.

Whenever aface down card is uncovered, it isturned face up. If one pileis removed completely, aface-
up King may be moved from a pile (together with all cards above it) or the top of the waste pile (see
below)) into the vacated space. There are four output piles, one for each suit, and the object of the game
ISsto get as many cards as possible into the output piles. Each time an Ace appears at the top of a pile or
the top of the stack it is moved into the appropriate output pile. Cards are added to the output pilesin
sequence, the suit for each pile being determined by the Ace on the bottom.

From the rest of the deck, called the stock, cards are turned up one by one and placed face up on a waste
pile. You may always play cards off the top of the waste pile, but only one at atime. Begin by moving a
card from the stock to the top of the waste pile. If there is ever more than one possible play to be made,
the following order must be observed:

1) Move a card from the top of a playing pile or from the top of the waste pile to an output pile. If the
waste pile becomes empty, move a card from the stock to the waste pile.

i) Move a card from the top of the waste pile to the leftmost playing pile to which it can be moved. If
the waste pile becomes empty move a card from the stock to the waste pile.

1) Find the leftmost playing pile which can be moved and place it on top of the leftmost playing pile to
which it can be moved.

Iv) Try i), ii) and iii) in sequence, restarting with i) whenever amove is made.
V) If no move is made via(i)-(iv) move a card from the stock to the waste pile and retry (i).

Only the topmost card of the playing piles or the waste pile may be played to an output pile. Once
played on an output pile, a card may not be withdrawn to help elsewhere. The game is over when either

1) al the cards have been played to the output or
i) the stock pile has been exhausted and no more cards can be moved

When played for money, the player pays the house $52 at the beginning and wins $5 for every card
played to the output piles.
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Write your program so that it will play several games, and determine your net winnings. Use arandom
number generator to shuffle the deck.

Output a complete record of two gamesin easily understood form. Include as output the number of
games played and the net winning (+ or -).

Goto Chapter 4 Back to Table of Contents
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« m )
CHAPTER 4: LINKED LISTS

4.1 SINGLY LINKED LISTS

In the previous chapters, we studied the representation of simple data structures using an array and a
sequential mapping. These representations had the property that successive nodes of the data object were
stored a fixed distance apart. Thus, (i) if the element &; of atable was stored at location L;;, then & ;41

was at the location L;; + ¢ for some constant ¢; (ii) if the ith node in a queue was at location L;, then the i
+ 1- st node was at location L; + ¢ mod n for the circular representation; (iii) if the topmost node of a
stack was at location L, then the node beneath it was at location Lt - ¢, etc. These sequential storage

schemes proved adequate given the functions one wished to perform (access to an arbitrary nodein a
table, insertion or deletion of nodes within a stack or queue).

However when a sequential mapping is used for ordered lists, operations such as insertion and deletion
of arbitrary elements become expensive. For example, consider the following list of all of the three letter
English wordsending in AT:

(BAT, CAT, EAT, FAT, HAT, JAT, LAT, MAT, OAT, PAT, RAT, SAT, TAT, VAT, WAT)

To make thislist complete we naturally want to add the word GAT, which means gun or revolver. If we
are using an array to keep thislist, then the insertion of GAT will require us to move elements already in
the list either one location higher or lower. We must either move HAT, JAT, LAT, ..., WAT or else
move BAT, CAT, EAT and FAT. If we have to do many such insertions into the middle, then neither
aternative is attractive because of the amount of data movement. On the other hand, suppose we decide
to remove the word LAT which refersto the Latvian monetary unit. Then again, we have to move many
elements so as to maintain the sequential representation of the list.

When our problem called for severa ordered lists of varying sizes, sequential representation again
proved to be inadequate. By storing each list in adifferent array of maximum size, storage may be
wasted. By maintaining the listsin asingle array a potentially large amount of data movement is needed.
Thiswas explicitly observed when we represented several stacks, queues, polynomials and matrices. All
these data objects are examples of ordered lists. Polynomials are ordered by exponent while matrices are
ordered by rows and columns. In this chapter we shall present an alternative representation for ordered
lists which will reduce the time needed for arbitrary insertion and deletion.

An elegant solution to this problem of data movement in sequential representationsis achieved by using
linked representations. Unlike a sequential representation where successive items of alist are located a
fixed distance apart, in alinked representation these items may be placed anywhere in memory. Another
way of saying thisisthat in a sequential representation the order of elementsisthe same asin the
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ordered list, while in alinked representation these two sequences need not be the same. To access
elementsin thelist in the correct order, with each element we store the address or location of the next
element in that list. Thus, associated with each dataitem in alinked representation is a pointer to the
next item. This pointer is often referred to asalink. In general, anodeis a collection of data, DATAL, ...,
DATAn and links LINK1, ...,LINKm. Each item in anodeis called afield. A field contains either a data
item or alink.

Figure 4.1 shows how some of the nodes of the list we considered before may be represented in memory
by using pointers. The elements of the list are stored in aone dimensional array called DATA. But the
elements no longer occur in sequential order, BAT before CAT before EAT, etc. Instead we relax this
restriction and allow them to appear anywhere in the array and in any order. In order to remind us of the
real order, asecond array, LINK, isadded. The valuesin this array are pointers to elementsin the DATA
array. Sincethelist startsat DATA(8) = BAT, let us set avariable F = 8. LINK(8) has the value 3,
which means it points to DATA(3) which contains CAT. The third element of thelist is pointed at by
LINK(3) whichisEAT. By continuing in thisway we can list al the words in the proper order.

[]

Figure 4.1 Non-Sequential List Representation
We recognize that we have come to the end when LINK has avalue of zero.

Some of the values of DATA and LINK are undefined such as DATA(2), LINK(2), DATA(5), LINK(5),
etc. We shall ignore this for the moment.

It is customary to draw linked lists as an ordered sequence of nodes with links being represented by
arrows asin figure 4.2. Notice that we do not explicitly put in the values of the pointers but simply draw
arrows to indicate they are there. Thisis so that we reinforce in our own mind the facts that (i) the nodes
do not actually reside in sequential locations, and that (ii) the locations of nodes may change on different
runs. Therefore, when we write a program which works with lists, we amost never look for a specific
address except when we test for zero.

Figure 4.2 Usual Way to Draw a Linked List

Let us now see why it is easier to make arbitrary insertions and deletions using alinked list rather than a
sequential list. To insert the dataitem GAT between FAT and HAT the following steps are adequate:

(i) get anode which is currently unused; let its address be X;

(i) set the DATA field of thisnode to GAT,;
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(iii) set the LINK field of X to point to the node after FAT which contains HAT;
(iv) set the LINK field of the node containing FAT to X.

Figure 4.3a shows how the arrays DATA and LINK will be changed after weinsert GAT. Figure 4.3b
shows how we can draw the insertion using our arrow notation. The new arrows are dashed. The
important thing to notice is that when we insert GAT we do not have to move any other elements which
are aready in the list. We have overcome the need to move data at the expense of the storage needed for
the second field, LINK. But we will see that thisis not too severe a penalty.

[]

Figure 4.3a Insert GAT Into DATA(5)
Figure 4.3b Insert Node GAT Into List

Now suppose we want to delete GAT from the list. All we need to do is find the element which
immediately precedes GAT, whichis FAT, and set LINK(9) to the position of HAT whichis 1. Again,
there is no need to move the data around. Even though the LINK field of GAT still contains a pointer to
HAT, GAT isno longer in the list (see figure 4.4).

Figure 4.4 Delete GAT from List

From our brief discussion of linked lists we see that the following capabilities are needed to make linked
representations possible:

(i) A means for dividing memory into nodes each having at least onelink field;
(i1) A mechanism to determine which nodes are in use and which are free;
(iii) A mechanism to transfer nodes from the reserved pool to the free pool and vice-versa.

Though DATA and LINK look like conventional one dimensional arrays, it is not necessary to
implement linked lists using them. For the time being let us assume that al free nodes are kept in a
"black box" called the storage pool and that there exist subalgorithms:
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() GETNODE(X) which providesin X a pointer to afree node but if no node isfree, it prints an error
message and stops;

(i1) RET(X) which returns node X to the storage pool.

In section 4.3 we shall see how to implement these primitives and also how the storage pool is
maintained.

Example 4.1: Assume that each node hastwo fields DATA and LINK. The following algorithm creates
alinked list with two nodes whose DATA fields are set to be the values'MAT' and 'PAT' respectively. T
Isapointer to the first nodein thislist.

procedure CREATE2(T)

cal | GETNCDE(I) /1 get an avail abl e node//

T D | ; DATA(I) D " VAT //store information into the node//
cal | GETNCDE(I) /1 get a second avail abl e node//

LI NK(T) D I /1l attach first node to the second//

LI NK( 1) D 0: DATA(I) D " PAT
end CREATE2
Theresulting list structureis

[]

Example 4.2: Let T be apointer to alinked list asin Example 4.1. T= 0 if the list has no nodes. Let X be
a pointer to some arbitrary node in the list T. The following algorithm inserts a node with DATA field
'OAT following the node pointed at by X.

procedure | NSERT(T, X)

cal | GETNCDE(I)

DATA(I) || oar
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if T =0 then [TDI; LI NK( 1) DO] /[linsert into enpty list//

el se [LINK(1) [ LINK(X) /linsert after X/
LINK(X) [ 1]
end | NSERT

The resulting list structure for thetwo cases T=0and T# 0is

[]

Example 4.3: Let X be apointer to some nodein alinked list T asin example 4.2. Let Y be the node
preceding X. Y =0if Xisthefirst nodein T (i.e., if X=T). The following agorithm deletes node X from
T.

procedure DELETE(X, Y, T)

| f Y:OthenTDLINK(T) //renove the first node//
el se LI NK(Y) DLINK(X) [/ renove an interior
node/ /

cal | RET(X) //return node to storage pool//

end DELETE

4.2 LINKED STACKS AND QUEUES

We have already seen how to represent stacks and queues sequentially. Such a representation proved
efficient if we had only one stack or one queue. However, when several stacks and queues co-exist, there
was no efficient way to represent them sequentially. In this section we present a good solution to this
problem using linked lists. Figure 4.5 shows alinked stack and a linked queue.

[]

Figure 4.5
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Notice that the direction of links for both the stack and queue are such as to facilitate easy insertion and
deletion of nodes. In the case of figure 4.5(a), one can easily add a node at the top or delete one from the
top. In figure 4.5(b), one can easily add a node at the rear and both addition and deletion can be
performed at the front, though for a queue we normally would not wish to add nodes at the front. If we
wish to represent n stacks and m queues simultaneously, then the following set of algorithms and initial
conditions will serve our purpose:

T(i) = Top of ith stack 1 =i =n
F(i) = Front of ith queue 1 =i = m
R(i) = Rear of ith queue 1 =i =m
Initial conditions:

T(i) =0 1 =1 =2n
F(i) =0 1 =i =m
Boundary conditions:

T(i) =0 I ff stack i enpty

F(i) =0 | ff queue i enpty

procedure ADDS(i, YY)
//add elenment Y onto stack i//

cal I GETNCDE( X)

DATA( X) D Y //store data value Y into new node//

L1 NK( X) D T(i1) /lattach new node to top of i-th stack//
T(1) DX //reset stack pointer//

end ADDS

procedure DELETES(i, Y)
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//delete top node fromstack i and set Y to be the DATA field of

t hi s node//

if T(i) = 0 then call STACK _EMPTY

XDT(i) //set X to top node of stack i//

YD DATA( X) /1Y gets new data//

T(1) D L1 NK( X) /'l renove node fromtop of stack i//
cal | RET(X) //return node to storage pool//

end DELETES

procedure ADDQi,Y)

//add Y to the ith queue//

cal | GETNCDE( X)

DATA(X) L1 v: Linkex [ o

if F(i) = 0 then [F(i) DR(i) DX] //the queue was enpty//
else [LINK(R(i)) LIxRri) L1x //the queue was

not enpty//

end ADDQ
procedure DELETEQi, YY)
//delete the first node in the ith queue, set Y to its DATA field//

if F(i) = 0 then call QUEUE _EMPTY
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else [Xx 1 FGi): Fi) L] L

[/set X to front node//

vy [ ] DATA(X); call RET(X)] //renove data
and return node//
end DELETEQ

The solution presented above to the n-stack, m-queue problem is seen to be both computationaliy and
conceptually ssmple. There is no need to shift stacks or queues around to make space. Computation can
proceed so long as there are free nodes. Though additional space is needed for the link fields, the cost is
no more than afactor of 2. Sometimes the DATA field does not use the whole word and it is possible to
pack the LINK and DATA fields into the same word. In such a case the storage requirements for
sequential and linked representations would be the same. For the use of linked lists to make sense, the
overhead incurred by the storage for the links must be overriden by: (i) the virtue of being able to
represent complex lists al within the same array, and (ii) the computing time for manipulating the listsis
less than for sequential representation.

Now all that remainsisto explain how we might implement the GETNODE and RET procedures.

4.3 THE STORAGE POOL

The storage pool contains all nodes that are not currently being used. So far we have assumed the
existence of a RET and a GETNODE procedure which return and remove nodes to and from the pool. In
this section we will talk about the implementation of these procedures.

The first problem to be solved when using linked allocation is exactly how anode is to be constructed
The number ,and size of the datafields will depend upon the kind of problem one has. The number of
pointers will depend upon the structural properties of the data and the operations to be performed. The
amount of space to be allocated for each field depends partly on the problem and partly on the
addressing characteristics of the machine. The packing and retrieving of information in asingle
consecutive slice of memory is discussed in section 4.12. For now we will assume that for each field
there is afunction which can be used to either retrieve the data from that field or store data into the field
of agiven node.

The next maor consideration is whether or not any nodes will ever be returned. In general, we assume
we want to construct an arbitrary number of items each of arbitrary size. In that case, whenever some
structure is no longer needed, we will "erase" it, returning whatever nodes we can to the available pool.
However, some problems are not so general. Instead the problem may call for reading in some data,

file:///C|/E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book 1/chap04.htm (8 of 108)7/3/2004 4:01:50 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 4: LINKED LISTS WWW.itdeveIopteam.com

examining the data and printing some results without ever changing the initial information. In this case a
linked structure may be desirable so as to prevent the wasting of space. Since there will never be any
returning of nodes thereis no need for a RET procedure and we might just as well allocate storagein
consecutive order. Thus, if the storage pool has n nodes with fields DATA and LINK, then GETNODE
could be implemented as follows:

procedure GETNODE(I)
/1l is set as a pointer to the next avail abl e node//

if AV > n then call NO_MORE NODES
L L] av

avllav+1
end GETNODE

The variable AV must initially be set to one and we will assumeitisaglobal variable. In section 4.7 we
will see a problem where thistype of aroutine for GETNODE is used.

Now let us handle the more general case. The main ideaisto initialy link together al of the available
nodesin asinglelist we call AV. Thislist will be singly linked where we choose any one of the possible
link fields as the field through which the available nodes are linked. This must be done at the beginning
of the program, using a procedure such as:

procedure | N T(n)

/linitialize the storage pool, through the LINK field, to contain
nodes

Wi th addresses 1,2,3, ...,n and set AV to point to the first node

inthis list//

for i L11ton- 1do
Link(i) i+ 1

end
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Linkn) [1o
AVl |1

end INIT
This procedure gives us the following list:
Figure 4.6 Initial Available Space List

Once INIT has been executed, the program can begin to use nodes. Every time a new node is needed, a
call to the GETNODE procedure is made. GETNODE examines the list AV and returns the first node on
thelist. Thisis accomplished by the following:

procedur e GETNODE( X)
/I Xis set to point to a free node if there is one on AV//

if AV = 0 then call NO__MORE NODES
x L] av

AV [ LI Nk Av)
end GETNODE

Because AV must be used by several procedures we will assumeit isaglobal variable. Whenever the
programmer knows he can return a node he uses procedure RET which will insert the new node at the
front of list AV. This makes RET efficient and impliesthat the list AV is used as a stack since the last
node inserted into AV is the first node removed (L1FO).

procedure RET(X)

/1 X points to a node which is to be returned to the avail abl e space

list//
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LINK(X) [ ] Av
Av ] x

end RET

If we look at the available space pool sometime in the middle of processing, adjacent nodes may no
longer have consecutive addresses. Moreover, it isimpossible to predict what the order of addresses will
be. Suppose we have avariable ptr which is a pointer to anode which is part of alist called SAMPLE.

[]

What are the permissable operations that can be performed on avariable which is a pointer? One legal
operation isto test for zero, assuming that is the representation of the empty list. (if ptr = Othen ...isa

correct use of ptr). Anillegal operation would beto ask if ptr = 1 or to add oneto ptr (ptr D ptr + 1).
These areillegal because we have no way of knowing what data was stored in what node. Therefore, we
do not know what is stored either at node one or at node ptr + 1. In short, the only legal questions we can
ask about a pointer variableis:

1) Isptr = 0 (or is ptr # 0)?

2) Is ptr equal to the value of another variable of type pointer, e.g., isptr = SAMPLE?
The only legal operations we can perform on pointer variablesis:

1) Set ptr to zero;

2) Set ptr to point to a node.

Any other form of arithmetic on pointersisincorrect. Thus, to move down the list SAMPLE and print its
values we cannot write:

ptr ] sAvPLE
while ptr # 5 do

print (DATA (ptr))

ptr Dptr +1
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end

This may be confusing because when we begin a program the first values that are read in are stored
sequentially. Thisis because the nodes we take off of the available space list are in the beginning at
consecutive positions 1,2,3,4, ...,max. However, as soon as nodes are returned to the free list, subsequent
items may no longer reside at consecutive addresses. A good program returns unused nodes to available
space as soon as they are no longer needed. Thisfreelist is maintained as a stack and hence the most
recently returned node will be the first to be newly allocated. (In some special cases it may make sense
to add numbers to pointer variables, e.g., when ptr + i isthe location of afield of a node starting at ptr or
when nodes are being allocated sequentially, see sections 4.6 and 4.12).

4.4 POLYNOMIAL ADDITION

L et ustackle areasonable size problem using linked lists. This problem, the manipulation of symbolic
polynomials, has become a classical example of the use of list processing. Asin chapter 2, we wish to be
able to represent any number of different polynomials aslong as their combined size does not exceed
our block of memory. In general, we want to represent the polynomial

A(X) = ax®M+ ... + a;x&;
where the a; are non-zero coefficients with exponentse; suchthat e,,>¢e,,.1>...>e,>¢e; >=0. Each

term will be represented by anode. A node will be of fixed size having 3 fields which represent the
coefficient and exponent of aterm plus a pointer to the next term

|COEF | EXP | LINK |

For instance, the polynomial A= 3x14 + 2x8 + 1 would be stored as

[]

while B = 8x14 - 3x10 + 10x6 would look like

[]
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In order to add two polynomials together we examine their terms starting at the nodes pointed to by A
and B. Two pointers p and g are used to move along the terms of A and B. If the exponents of two terms
are equal, then the coefficients are added and a new term created for the result. If the exponent of the
current term in A is less than the exponent of the current term of B, then a duplicate of the term of B is
created and attached to C. The pointer q is advanced to the next term. Similar action istaken on A if EXP
(p) > EXP(q). Figure 4.7 illustrates this addition process on the polynomials A and B above.

[]
[]
[]

Figure 4.7 Generating the First Three Terms of C=A +B

Each time anew node is generated its COEF and EXP fields are set and it is appended to the end of the
list C. In order to avoid having to search for the last node in C each time a new node is added, we keep a
pointer d which pointsto the current last node in C. The complete addition algorithm is specified by the
procedure PADD. PADD makes use of a subroutine ATTACH which creates a new node and appends it
to the end of C. To make things work out neatly, C isinitially given a single node with no values which
is deleted at the end of the algorithm. Though thisis somewhat inelegant, it avoids more computation.
Aslong asits purpose s clearly documented, such atactic is permissible.

procedure ATTACH(C E, d)
[/create a newtermwith COEF = C and EXP = E and attach it
to the node pointed at by d//

cal | GETNODE( 1)

ExP(1) L] E

coer(1) L] c

L1 NK( d) DI /lattach this node to the end of this list//
dDI /I nmove pointer d to the new | ast node//

end ATTACH
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Thisisour first really complete example of the use of list processing, so it should be carefully studied.
The basic algorithm is straightforward, using a merging process which streams along the two
polynomials either copying terms or adding them to the result. Thus, the main while loop of lines 3-15
has 3 cases depending upon whether the next pair of exponents are =, <, or >. Notice that thereare 5
places where a new term is created, justifying our use of the subroutine ATTACH.

Finally, some comments about the computing time of this algorithm. In order to carry out a computing
time analysisit isfirst necessary to determine which operations contribute to the cost. For this algorithm
there are several cost measures:

(i) coefficient additions;

(it) coefficient comparisons;

(i) additions/deletions to avail able space;

procedure PADD(A, B, C

/I polynomals A and B represented as singly linked lists are

summed to formthe new |list naned T/

1 p DA; q D B /1p,q pointers to next termof A B//
2 cal |l GETNODE(C); dDC /[/initial node for C, returned
| ater//

3 whilepF0and gqF 0do //while there are nore ternms in

A and B//

4 case

5 . EXP(p) = EXP(Q): / I equal exponents//
6 x ] coeF(p) + coEF(q)

7 if x # 0 then call ATTACH(x, EXP(p), d)

file://IC|/E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book1/chap04.htm (14 of 108)7/3/2004 4:01:50 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 4: LINKED LISTS

www.itdevelopteam.com

8 p [] LINK(p); q [] LI NK( q) /  advance to next
terns//

9 EXP(p) < EXP(Qq):

10 cal | ATTACH( COEF(q), EXP(q), d)

11 q [] LI NK(q) /|l advance to next term/

12 el se: call ATTACH(CCEF(p), EXP(p), d)

13 p [] L1 NK( p) /l advance to next termof A/
14 end

15 end

16 while p # 0 do //copy remaining terns of A//

17 cal | ATTACH( CCEF(p), EXP(p), d)

18 p L LINK(p)

19 end

20 while q # 0 do //copy remaining terns of B//

21 cal | ATTACH( CCEF(q), EXP(Qq), d)

22 q L] LINk(q)

23 end

24 LI NK(d) [] 0; t [] G CI:] LI NK( O //delete extra initial
node/ /

25 call RET(t)
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26 end PADD
(iv) creation of new nodes for C.

L et us assume that each of these four operations, if done once, takes a single unit of time. The total time
taken by algorithm PADD is then determined by the number of times these operations are performed.
This number clearly depends on how many terms are present in the polynomials A and B. Assume that A
and B have m and n terms respectively.

A(X) = a @M+ ...+ a;x€L, B(X) = bxN+ ... + byxf1

where

a,bF#0ande,>..>¢e =0,f,>..>f =0

Then clearly the number of coefficient additions can vary as
0 = coefficient additions= min {m, n}.

The lower bound is achieved when none of the exponents are equal, while the upper bound is achieved
when the exponents of one polynomial are a subset of the exponents of the other.

Asfor exponent comparisons, one comparison is made on each iteration of the while loop of lines 3-15.
On each iteration either p or g or both move to the next term in their respective polynomials. Since the
total number of termsism+ n, the number of iterations and hence the number of exponent comparisons
is bounded by m + n. One can easily construct a case when m+ n - 1 comparisons will be necessary: e.g.
m=n and

€n>fh>en1>fh1>..>H>ene> .. > >1.

The maximum number of termsin Cism+ n, and so no more than m + n new nodes are created (this
excludes the additional node which is attached to the front of C and later returned). In summary then, the
maximum number of executions of any of the statementsin PADD is bounded above by m+ n.
Therefore, the computing time is O(m + n). This means that if the algorithm isimplemented and run on a
computer, the time taken will be c;™ + c," + c3 where c4,c,,c5 are constants. Since any algorithm that
adds two polynomials must look at each nonzero term at least once, every algorithm must have atime
requirement of ¢'ym + c'>n + ¢'3. Hence, algorithm PADD is optimal to within a constant factor.

The use of linked listsiswell suited to polynomial operations. We can easily imagine writing a
collection of procedures for input, output addition, subtraction and multiplication of polynomials using
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linked lists as the means of representation. A hypothetical user wishing to read in polynomials A(x), B(xX)
and C(x) and then compute D(x) = A(X) * B(x) + C(x) would write in his main program:

cal | READ(A)
cal | READ(B)
cal | READ( O

T[] PmuL(A B

p ] PaDD(T, O
call PRI NT(D)

Now our user may wish to continue computing more polynomials. At this point it would be useful to
reclaim the nodes which are being used to represent T(x). This polynomial was created only as a partia
result towards the answer D(x). By returning the nodes of T(x), they may be used to hold other
polynomials.

procedure ERASE(T)

//return all the nodes of T to the avail able space |ist avoiding
r epeat ed

calls to procedure RET//

if T =0 then return

p LT

while LINK (p) # 0 do //find the end of T//

o L] LINK (p)

end

LI NK (p)D AV /'l p points to the |ast node of T//
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AVDT [/ avail able |ist now includes T//
end ERASE

Study this algorithm carefully. It cleverly avoids using the RET procedure to return the nodes of T one
node at atime, but makes use of the fact that the nodes of T are already linked. The time required to
erase T(X) is still proportional to the number of nodesin T. This erasing of entire polynomials can be
carried out even more efficiently by modifying the list structure so that the LINK field of the last node
points back to the first node asin figure 4.8. A list in which the last node points back to the first will be
termed acircular list. A chainisasingly linked list in which the last node has a zero link field.

Figure 4.8 Circular List Representation of A = 3x14 +2x8+1

Circular lists may be erased in afixed amount of time independent of the number of nodesin the list.
The agorithm below does this.

procedur e CERASE(T)
//return the circular list T to the avail able pool//

If T =0 then return;
X ] N (m

LINT) L] Av
Av [ ] x

end CERASE

Figure 4.9 is a schematic showing the link changesinvolved in erasing acircular list.

[]

Figure 4.9 Dashes Indicate Changes Involved in Erasing a Circular List

A direct changeover to the structure of figure 4.8 however, causes some problems during addition, etc.,
as the zero polynomial has to be handled as a special case. To avoid such special cases one may
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introduce a head node into each polynomial; i.e., each polynomial, zero or non-zero, will contain one
additional node. The EXP and COEF fields of this node will not be relevant. Thus the zero polynomial
will have the representation:

[]

while A = 3x14 + 2x8 + 1 will have the representation

[]

For this circular list with head node representation the test for T = 0 may be removed from CERASE.
The only changes to be made to algorithm PADD are:

(i) at line 1 define p, q by pL_J LINK (A): q[_]LINK(B)
(i) at line 3: whilep#A and qF B do

(iii) at line 16: whilep# A do

(iv) at line 20: while g ¥ B do

(v) at line 24: replace this line by LINK(d) D C

(vi) deleteline 25

Thus the algorithm stays essentially the same. Zero polynomials are now handled in the same way as
nonzero polynomials.

A further ssimplification in the addition algorithm is possible if the EXP field of the head nodeis set to -
1. Now when all nodes of A have been examined p = A and EXP(p) = -1. Since -1 = EXP(q) the
remaining terms of B can be copied by further executions of the case statement. The sameistrueif all
nodes of B are examined before those of A Thisimpliesthat there is no need for additional code to copy
the remaining terms asin PADD. The final algorithm takes the following simple form.

procedure CPADD (A, B, O
/I polynomals A and B are represented as circular lists with head
nodes so that EXP(A) = EXP(B) = -1. Cis returned as their sum

represented as a circular list//
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p LIunk (a): gl Links)

call GETNCDE(C); EXP(C D -1 /| / set up head node//
d]c //1ast node in O/

| oop

case

EXP(p) = EXP(q): if EXP(p)=-1lthen [LINK(d)[_lc return]

x [_] coer(p) + CoEF(q)

if x ¥ 0 then call ATTACH(x, EXP(p), d

p L) Lunkep): g L] Link(qg)

EXP(p) < EXP(q): call ATTACH(CCEF(q), EXP(Qq), d)

g L] Link(q)

el se : call ATTACH(COEF(p), EXP(p), d)

p L] Link(p)
end

forever

end CPADD

Let usreview what we have done so far. We have introduced the notion of asingly linked list. Each
element on the list is anode of fixed size containing 2 or more fields one of whichisalink field. To
represent many lists all within the same block of storage we created a special list called the available
space list or AV. Thislist contains all nodes which are cullently not in use. Since all insertions and
deletions for AV are made at the front, what we really haveisalinked list being used as a stack.
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There is nothing sacred about the use of either singly linked lists or about the use of nodes with 2 fields.
Our polynomia example used three fields: COEF, EXP and LINK. Also, it was convenient to use
circular linked lists for the purpose of fast erasing. As we continue, we will see more problems which
call for variations in node structure and representation because of the operations we want to perform.

4.5 MORE ON LINKED LISTS

It is often necessary and desirable to build avariety of routines for manipulating singly linked lists.
Some that we have already seen are: 1) INIT which originally links together the AV list; 2) GETNODE
and 3) RET which get and return nodes to AV. Another useful operation is one which inverts a chain.
Thisroutine is especially interesting because it can be done "in place” if we make use of 3 pointers.

procedure | NVERT( X)

//a chain pointed at by X is inverted so that if X = (a, ...,ay

then after execution X = (ay, ...,aq)//

pDX;qDO

while p # 0 do

qu;qu /[lr follows qg; q follows p//
p D LI NK( p) [/ p noves to next node//

L1 NK( q) Dr /[/1ink g to previous node//
end

x [ q

end | NVERT

The reader should try this algorithm out on at least 3 examples: the empty list, and lists of length 1 and 2
to convince himself that he understands the mechanism. For alist of m= 1 nodes, the whileloopis
executed mtimes and so the computing timeis linear or O(m).

Another useful subroutine is one which concatenates two chains X and Y.
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procedure CONCATENATE(X, Y, 2)
[IX=(ay, ...,ap, Y =(by, ...,by), mn = 0, produces a new chain

Z=(ag, ....amby, ....by)//

z[1x

O then [Z D Y; return]

X
1

<
I

O then return

p L] x

while LINK(p) # 0 do //find | ast node of X/
o L] LINK(p)

end

LINK(p) L]y //1ink |ast node of X to Y//

end CONCATENATE

Thisagorithm is also linear in the length of the first list. From an aesthetic point of view it isnicer to
write this procedure using the case statement in SPARKS. Thiswould look like:

procedure CONCATENATE(X, Y, 2)

case
X=0:z0L]y
0: zL]x
el se : pDX; ZDX

while LINK(p) F 0 do

Y
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p L] LINK (p)
end
LInkp) L]y
end

end CONCATENATE

Now let us take another look at circular lists like the one below:

[]

A = (Xq,%2,X3). Suppose we want to insert a new node at the front of this list. We have to change the
LINK field of the node containing x3. This requires that we move down the entire length of A until we

find the last node. It is more convenient if the name of acircular list pointsto the last node rather than
the first, for example:

[]

Now we can write procedures which insert anode at the front or at the rear of acircular list and take a
fixed amount of time.

procedure | NSERT__FRONT(A, X)
/linsert the node pointed at by X to the front of the circular |ist

A, where A points to the |ast node//
if A=0then [AL]X

LINK (X) ] A

else [LINK(X) [ LINK (A

LI nk(A) L] X
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end | NSERT- - FRONT
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Toinsert X at the rear, one only needs to add the additional statement A D X to the else clause of
INSERT - FRONT.

As alast example of asimple procedure for circular lists, we write a function which determines the
length of such alist.

procedure LENGTH(A)

//1find the length of the circular list A/
i Lo

if AF 0 then [ptr A

r epeat

i L1+ 1; ptr L] Link(ptr)

until ptr = A ]

return (i)

end LENGTH

4.6 EQUIVALENCE RELATIONS

L et us put together some of these ideas on linked and sequential representations to solve a problem
which arises in the translation of computer languages, the processing of equivalence relations. In
FORTRAN oneis alowed to share the same storage among several program variables through the use
of the EQUIVALENCE statement. For example, the following pair of Fortran statements

DIMENSION A(3), B(2,2), C(6)
EQUIVALENCE (A(2), B(1,2), C(4)), (A(1),D), (D,E,F), (G,H)

would result in the following storage assignment for these variables:
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[]

As aresult of the equivalencing of A (2), B(1,2) and C(4), these were assigned the same storage word 4.
Thisin turn equivalenced A(1), B(2,1) and C(3), B(1,1) and C(2), and A(3), B(2,2) and C(5). Because of
the previous equivalence group, the equivalence pair (A(1), D) also resulted in D sharing the same space
as B(2,1) and C(3). Hence, an equivaence of the form (D, C(5)) would conflict with previous
eguivalences, since C(5) and C(3) cannot be assigned the same storage. Even though the sum of
individual storage requirements for these variablesis 18, the memory map shows that only 7 words are
actually required because of the overlapping specified by the equivaence groupsin the
EQUIVALENCE statement. The functions to be performed during the processing of equivalence
statements, then, are:

www.itdevelopteam.com

() determine whether there are any conflicts,
(i) determine the total amount of storage required;

(iii) determine the relative address of all variables (i.e., the address of A(1), B(1,1), C(1), D, E, F, G and
H in the above example).

In the text we shall solve asimplified version of this problem. The extension to the general Fortran
equivalencing problem isfairly straight-forward and appears as an exercise. We shall restrict ourselves
to the case in which only ssimple variables are being equivalenced and no arrays are allowed. For ease in
processing, we shall assume that all equivalence groups are pairs of numbers (i,j), where if
EQUIVALENCE(A,F) appearsthen i,j are the integers representing A and F. These can be thought of as
the addresses of A and F in asymhol table. Furthermore, it is assumed that if there are n variables, then
they ale represented by the numbers 1 to n.

The FORTRAN statement EQUIVALENCE specifies arelationship among addresses of variables. This
relation has several properties which it shares with other relations such as the conventional mathematical

equals. Suppose we denote an arbitrary relation by the symbol D and suppose that:
() For any variable x, x| X, e.0. X isto be assigned the same location as itself. Thus|_lisreflexive.

(i1) For any two variablesx and y, if XD y then yD X, €.g. assigning y the same location as x isthe
same as assigning x the same location asy. Thus, therelation D IS Ssymmetric.

(iii) For any three variables x, y and z, if ny and yD zthen XD z,eg.ifxandy areto be assigned
the same location and y and z are also to be assigned the same location, then so also are x and z. The

relation D istransitive.
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Definition: A relation, D over aset S issaid to be an equivalence relation over Siff it is symmetric,
reflexive and transitive over S,

Examples of equivalence relations are numerous. For example, the "equal to" (=) relationship isan
equivalencerelation since: (i) x =X, (ii) x=yimpliesy = x, and (iii) x=yand y = zimpliesx = z. One
effect of an equivalence relation isto partition the set Sinto equivalence classes such that two members

x and y of Sarein the same equivalence classiff x D y. For example, if we have 12 variables numbered
1 through 12 and the following equivalences were defined via the EQUIVALENCE statement:

105 ald2 70011, ol 10 8lls 7019 alle 3[]12 and
12 ]1

then, as aresult of the reflexivity, symmetry and transitivity of the relation =, we get the following
partitioning of the 12 variablesinto 3 equivalence classes:

{1,3,5,8,12}; {2,4,6}; {7,9, 10, 11}.

So, only three words of storage are needed for the 12 variables. In order to solve the FORTRAN
eguivalence problem over simple variables, all one has to do is determine the equivallence classes. The
number of equivalence classesii the number of words of storage to be alocated and the members of the
same equivalence class are all ocated the same word of storage.

The algorithm to determine equivalence classes works in essentially two phases. In the first phase the
equivalence pairs (i,j) are read in and stored somewhere. In phase two we begin at one and find all pairs
of theform (1,)). Thevalues 1 and j are in the same class. By transitivity, al pairs of the form (j,k) imply
kisin the same class. We continue in this way until the entire equivalence class containing one has been
found, marked and printed. Then we continue on.

Thefirst design for this algorithm might go this way:
procedure EQUI VALENCE (m n)
initialize

for k L11to mdo

read the next pair (i,j)

process this pair
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end

initialize for output

r epeat

out put a new equi val ence cl ass
until done

end EQUI VALENCE

The inputs m and n represent the number of related pairs and the number of objects respectively. Now
we need to determine which data structure should be used to hold these pairs. To determine thiswe
examine the operations that are required. The pair (i,j) is essentially two random integers in the range 1
to n. Easy random access would dictate an array, say PAIRS (1: n, 1: m). Thei-th row would contain the
elementsj which are paired directly to i in the input. However, this would potentially be very wasteful of
space since very few of the array elements would be used. It might also require considerable timeto
insert anew pair, (i,k), into row i since we would have to scan the row for the next free location or use
more storage.

These considerations lead us to consider alinked list to represent each row. Each node on the list
requiresonly aDATA and LINK field. However, we still need random access to the i-th row so aone
dimensional array, SEQ(1:n) can be used as the headnodes of the n lists. Looking at the second phase of
the algorithm we need a mechanism which tells us whether or not object i has already been printed. An
array of bits, BIT(1:n) can be used for this. Now we have the next refinement of the algorithm.

procedure EQUI VALENCE (m n)
declare SEQ 1:n), DATA(1:2m, LINK(1:2m, BIT(1l:n)

initialize BIT, SEQto zero

for leto m do
read the next pair (i,j)
put j on the SEQ(i) Iist

put i on the SEQj) Iist
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end

| ndex [] 1

r epeat
i f BIT(index) = 0
then [BI T(index) |1

out put this new equival ence cl ass]

I ndex [] i ndex + 1
until 1 ndex > n
end

Let us simulate the algorithm as we have it so far, on the previous data set. After the for loop is
completed the lists will look like this.

[]

For each relation i D ], two nodes are used. SEQ(i) pointsto alist of nodes which contains every
number which is directly equivalenced to i by an input relation.

In phase two we can scan the SEQ array and start with thefirsti, 1 =i = nsuchthat BIT(i) = 0. Each
element in the list SEQ(i) is printed. In order to process the remaining lists which, by transitivity, belong
in the same class asi a stack of their nodes is created. Thisis accomplished by changing the LINK fields
so they point in the reverse direction. The complete algorithm is now given.

procedure EQUI VALENCE (m n)

//1nput: m the nunber of equival ence pairs

n, the nunber of variables

Qutput: variables 1, ...,n printed in equival ence classes//

declare SEQ 1:n), BIT(1l:n)
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DATA(1: 2m), LINK(1: 2n):

for i L]1tondoseqi) BIT(i)[]o end
av [ I

for k [] 1 to mdo /I phase 1: process all input//

read next equival ence pair (i, j)

DATA(av) Ll j: LINK(av) L sEQi) /ladd j to list i/l
SEQ(i) D av, av D av + 1

DATA(av) li: LINK(av) [ sEQj) //add i to list j//

SEQ(j) Dav; av Dav + 1

end

I ndex [] 1

r epeat /I phase 2: output all classes//

if BIT (index) =0

then [print (' A new class', index)

Bl T(i ndex) [] 1 /[l mark class as output//

ptr | sEQindex); top []o /linitialize stack//
| oop //find the entire class//

while ptr # 0 do /|l process a list//

i ] paTA (ptr)

www.itdevelopteam.com
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if BIT(j) =0
then [print (j); BIT(j) L]1
t LNk (ptr)y; Link (ptr) [ top

top D ptr; ptr Dt]

el se pt rDLI NK (ptr)
end

If top = 0 then exit |/ stack enpty//
ptr || SEQ DATA(top))

top D LI NK (top)

forever]

I ndex [] i ndex + 1
until 1 ndex > n

end EQUI VALENCE

Analysis of Algorithm EQUIVALENCE

The initiaization of SEQ and BIT takes O(n) time. The processing of each input pair in phase 1 takes a
constant amount of time. Hence, the total time for this phase is O(m). In phase 2 each node is put onto
the linked stack at most once. Since there are only 2m nodes and the repeat loop is executed n times, the
time for this phase is O(m + n). Hence, the overall computing timeis O(m + n). Any algorithm which
processes equivalence relations must look at all the m equivalence pairs and also at all the n variables at
least once. Thus, there can be no algorithm with a computing time less than O(m + n). This means that
the algorithm EQUIVALENCE is optimal to within a constant factor. Unfortunately,the space required
by the algorithm isalso O(m + n). In chapter 5 we shall see an alternative solution to this problem which
requires only O(n) space.
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In Chapter 2, we saw that when matrices were sparse (i.e. many of the entries were zero), then much
space and computing time could be saved if only the nonzero terms were retained explicitly. In the case
where these nonzero terms did not form any "nice" pattern such as atriangle or aband, we devised a
sequential scheme in which each nonzero term was represented by a node with three fields: row, column
and value. These nodes were sequentially organized. However, as matrix operations such as addition,
subtraction and multiplication are performed, the number of nonzero termsin matrices will vary,
matrices representing partial computations (as in the case of polynomials) will be created and will have
to be destroyed later on to make space for further matrices. Thus, sequential schemes for representing
sparse matrices suffer from the same inadequacies as similar schemes for polynomials. In this section we
shall study avery general linked list scheme for sparse matrix representation. As we have aready seen,
linked schemes facilitate efficient representation of varying size structures and here, too, our scheme
will overcome the aforementioned shortcomings of the sequential representation studied in Chapter 2.

In the data representation we shall use, each column of a sparse matrix will be represented by a
circularly linked list with ahead node. In addition, each row will also be acircularly linked list with a
head node. Each node in the structure other than a head node will represent a nonzero term in the matrix
A and will be made up of fivefields:

ROW, COL, DOWN, RIGHT and VALUE. The DOWN field will be used to link to the next nonzero
element in the same column, while the RIGHT field will be used to link to the next nonzero element in
the same ROW. Thus, if g;; # 0, then there will be anode with VALUE field a;, ROW field i and COL

field j. This node will be linked into the circular linked list for row i and also into the circular linked list
for column j. It will, therefore, be a member of two lists at the same time..

In order to avoid having nodes of two different sizesin the system, we shall assume head nodesto be
configured exactly as nodes being used to represent the nonzero terms of the sparse matrix. The ROW
and COL fields of head nodes will be set to zero (i.e. we assume that the rows and columns of our
matrices have indices >0). Figure 4.12 shows the structure obtained for the 6 x 7 sparse matrix, A, of
figure 4.11.

[]

Figure 4.10 Node Structure for Sparse Matrix Representation

[]

Figure 4.11 6 x 7 Sparse Matrix A

For each nonzero term of A, we have one five field node which isin exactly one column list and one row
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list. The head nodes are marked HI-H7. As can be seen from the figure, the VALUE field of the head
nodes for each column list is used to link to the next head node while the DOWN field links to the first
nonzero term in that column (or to itself in case there is no nonzero term in that column). This|leaves the
RIGHT field unutilized. The head nodes for the row lists have the same ROW and COL values as the
head nodes for the column lists. The only other field utilized by the row head nodesis the RIGHT field
which is not used in the column head nodes. Hence it is possible to use the same node as the head node
for row i asfor columni. It isfor this reason that the row and column head nodes have the same | abels.
The head nodes themselves, linked through the VALUE field, form acircularly linked list with a head
node pointed to by A. This head node for the list of row and column head nodes contains the dimensions
of the matrix. Thus, ROW(A) is the number of rowsin the matrix A while COL(A) is the number of
columns. Asin the case of polynomials, al referencesto this matrix are made through the variable A. If
we wish to represent an n x m sparse matrix with r nonzero terms, then the number of nodes needed isr
+ max {n,m} + 1. While each node may require 2 to 3 words of memory (see section 4.12), the total
storage needed will be less than nm for sufficiently small r.

[]

Figure 4.12 Linked Representation of the Sparse Matrix A

Having arrived at this representation for sparse matrices, let us see how to manipulate it to perform
efficiently some of the common operations on matrices. We shall present algorithmsto read in a sparse
matrix and set up its linked list representation and to erase a sparse matrix (i.e. to return all the nodesto
the available space list). The algorithms will make use of the utility algorithm GETNODE(X) to get
nodes from the available space list.

To begin with let uslook at how to go about writing algorithm MREAD(A) to read in and create the
gparse matrix A. We shall assume that the input consists of n, the number of rows of A, mthe number of
columns of A, and r the number of nonzero terms followed by r triples of the form (i,j,&;;). These triples

consist of the row, column and value of the nonzero terms of A. It is also assumed that the triples are
ordered by rows and that within each row, the triples are ordered by columns. For example, the input for
the 6 X 7 sparse matrix of figure 4.11, which has 7 nonzero terms, would take the form: 6,7,7,
1,3,11;1,6,13;2,1,12;2,7,14,3,2,-4,3,6,-8;6,2,-9. We shall not concern ourselves here with the actual
format of thisinput on the input media (cards, disk, etc.) but shall just assume we have some mechanism
to get the next triple (see the exercises for one possible input format). The algorithm MREAD will also
make use of an auxiliary array HDNODE, which will be assumed to be at least as large as the largest
dimensioned matrix to be input. HDNODE(i) will be a pointer to the head node for column i, and hence
also for row i. Thiswill permit usto efficiently access columns at random while setting up the input
matrix. Algorithm MREAD proceeds by first setting up all the head nodes and then setting up each row
list, smultaneously building the column lists. The VALUE field of headnodei isinitially used to keep
track of the last node in columni. Eventually, in line 27, the headnodes are linked together through this
field.
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Since GETNODE works in a constant amount of time, all the head nodes may be set up in O(max {n,
m}) time, where n is the number of rows and m the number of columnsin the matrix being input. Each
nonzero term can be set up in a constant amount of time because of the use of the variable LAST and a
random access scheme for the bottommost node in each column list. Hence, the for loop of lines 9-20
can be carried out in O(r) time. The rest of the algorithm takes O(max {n,m}) time. The total timeis
therefore O(max {n,m} + r) = O(n + m+ r). Note that thisis asymptotically better than the input time of
O(nm) for an n x m matrix using atwo-dimensional array, but slightly worse than the sequential sparse
method of section 2.3.

Before closing this section, let ustake alook at an algorithm to return all nodes of a sparse matrix to the
available space list.

procedur e NMERASE(A)

//return all nodes of Ato avail able space |ist. Assune that the
avai |l abl e

space list is a singly linked list |linked through the field R GHT

wWith AV pointing to the first node in this list.//

RaT(A) Ll avy av ] a nexr L] vaLug(a)

while NEXT # A do [/ erase circular lists by rows//
T[] R GHT(NEXT)
RI GHT(NEXT) || Av

av LT

NEXT || VALUE( NEXT)
end

end MERASE
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Since each nodeisin exactly onerow list, it is sufficient to just return all the row lists of the matrix A.
Each row list iscircularly linked through the field RIGHT. Thus, nodes need not be returned one by one
asacircular list can be erased in a constant amount of time. The computing time for the algorithm is
readily seen to be O(n + m). Note that even if the available space list had been linked through the field
DOWN, then erasing could still have been carried out in O(n + m) time. The subject of manipulating
these matrix structuresis studied further in the exercises. The representation studied here is rather
genera. For most applications this generality is not needed. A simpler representation resulting in simpler
algorithms is discussed in the exercises.

procedure NMREAD(A)

//lread in a matrix A and set up its internal representation as
di scussed previously. The triples representing nonzero terns
are assuned ordered by rows and within rows by col ums.

An auxiliary array HDNCDE is used.//

1 read (n,mr) //'m n are assuned positive. r is the nunber

of nonzero el enents//
2 pDnax{mn}

3 for i D 1 to p do /1 get p headnodes for rows and

col ums//
4 cal | GETNODE(X); HDNoDE(i) L] x
5 rRoNX [l co(x o

6 R GHT(X) [l vaLug(x) [ x //these fields point to

t hensel ves//
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7 end
8 current_rOM/[] 1; LAST [] HDNODE( 1)

9 for i [] 1 tor do
10 read (rrow, ccol, val) /1 get next triplel//
11 If rrow > current__row //current rowis done; close it and

begi n anot her//
12 t hen [ RI GHT( LAST) [] HDNCDE( current __row)

13 CUFfGﬂt__fOM/[] rrow, LAST [] HDNCDE( r r ow) ]
/I LAST points to rightnost node//

14 cal | GETNCDE( X)

15  RONX Llrrow cou(x []ccol; vaLug(x) [ val

//store triple into new node//
16 Rl GHT( LAST) [] X; LAST [] X /[/link into row list//

17 DOWN( VALUE( HDNODE( ccol ))) [ x:

[/1link into colum list//

18 VALUE( HDNODE(ccol )) [ ] x

19
20 end
21 [/close |ast row /
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if r # 0 then RI GHT(LAST) [ ] HDNODE( cur r ent __r ow)

22 for i Dlto m do [/close all colum lists//
23 DOWN( VALUE( HDNODE(i ))) HDNODE( )
24 end

25 //set up list of headnodes |inked through VALUE field//
26 call GETNODE(A): RONA) Ll n: ca(a [Im
/|l set up headnode of matrix//

27  for i LJ1top- 1 do VALUE(HDNODE(i)) || HDNODE(i + 1)

end
28  if p =0 then VALUE(A) [ | A
29 el se [ VALUE( HDNODE(p)) ] A

VALUE(A) || HDNODE( 1) ]

30 end MREAD

4.8 DOUBLY LINKED LISTS AND DYNAMIC
STORAGE MANAGEMENT

So far we have been working chiefly with singly linked linear lists. For some problems these would be
too restrictive. One difficulty with these listsisthat if we are pointing to a specific node, say P, then we
can easily move only in the direction of the links. The only way to find the node which precedes P isto
start back at the beginning of the list. The same problem arises when one wishes to delete an arbitrary
node from asingly linked list. As can be seen from example 4.3, in order to easily delete an arbitrary
node one must know the preceding node. If we have a problem where moving in either direction is often
necessary, then it is useful to have doubly linked lists. Each node now has two link fields, one linking in
the forward direction and one in the backward direction.
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A nodein adoubly linked list has at least 3 fields, say DATA, LLINK (left link) and RLINK (right link).
A doubly linked list may or may not be circular. A sample doubly linked circular list with 3 nodesis
given in figure 4.13. Besides these three nodes a special node has been

Figure 4.13 Doubly Linked Circular List with Head Node

added called a head node. Aswas true in the earlier sections, head nodes are again convenient for the
algorithms. The DATA field of the head node will not usually contain information. Now suppose that P
points to any node in adoubly linked list. Then it is the case that

P = RLINK (LLINK(P)) = LLINK (RLINK(P)).

This formulareflects the essential virtue of this structure, namely, that one can go back and forth with
equal ease. An empty list isnot really empty since it will always have its head node and it will look like

[]

Now to work with these lists we must be able to insert and delete nodes. Algorithm DDLETE deletes
node X from list L.

procedure DDLETE(X, L)
if X =L then call NO_MORE NCDES

//Lis alist with at | east one node//
RLI NK( LLI NK( X)) D RLI NK( X)

LLI NK( RLI NK( X)) D LLI NK( X)
cal | RET(X)
end DDLETE

X now points to anode which is no longer part of list L. Let us see how the method works on a doubly
linked list with only a single node.

[]
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Even though the RLINK and LLINK fields of node X still point to the head node, this node has
effectively been removed as there is no way to access X through L.

Insertion is only slightly more complex.
procedure DI NSERT (P, X

/linsert node P to the right of node X//

LLI NK( P) [ ] x //set LLINK and RLINK fields of node P//
RLINK(P) || RLI NK(X)

LLI NK(RLINK(X)) [ P

RUINK(X) [P
end DI NSERT

In the next section we will see an important problem from operating systems which is nicely solved by
the use of doubly linked lists.

Dynamic Storage Management

In a multiprocessing computer environment, several programs reside in memory at the same time.
Different programs have different memory requirements. Thus, one program may require 60K of
memory, another 100K, and yet another program may require 300K. Whenever the operating system
needs to request memory, it must be able to allocate a block of contiguous storage of the right size.
When the execution of a program is complete, it releases or frees the memory block allocated to it and
this freed block may now be allocated to another program. In a dynamic environment the request sizes
that will be made are not known ahead of time. Moreover, blocks of memory will, in general, be freed in
some order different from that in which they were allocated. At the start of the computer system no jobs
are in memory and so the whole memory, say of size M words, is available for allocation to programs.
Now, jobs are submitted to the computer and requests are made for variable size blocks of memory.
Assume we start off with 100,000 words of memory and five programs P1, P2, P3, P4 and P5 make
requests of size 10,000, 15,000, 6,000, 8,000 and 20,000 respectively. Figure 4.14 indicates the status of
memory after storage for P5 has been alocated. The unshaded area indicates the memory that is
currently not in use. Assume that programs P4 and P2 compl ete execution, freeing the memory used by
them. Figure 4.15 show the status of memory after the blocks for P2 and P4 are freed. We now have
three blocks of contiguous memory that are in use and another three that are free. In order to make
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further allocations, it is necessary to keep track of those blocks that are not in use. This problem is
similar to the one encountered in the previous sections where we had to maintain alist of al free nodes.
The difference between the situation then and the one we have now is that the free space consists of
variable size blocks or nodes and that a request for a block of memory may now require allocation of
only a portion of a node rather than the whole node. One of the functions of an operating system isto
maintain alist of all blocks of storage currently not in use and then to allocate storage from this unused
pool as required. One can once again adopt the chain structure used earlier to maintain the available
space list. Now, in addition to linking all the free blocks together, it is necessary to retain information
regarding the size of each block in thislist of free nodes. Thus, each node on the free list has two fields
initsfirst word, i.e., SIZE and LINK. Figure 4.16 shows the free list corresponding to figure 4.15. The
use of a head node simplifies later algorithms.

[]

Figure 4.14 Memory After Allocation to P1-P5
Figure 4.15 Status of Memory After Completion of P2 and P4

If we now receive arequest for ablock of memory of size N, then it is necessary to search down the list
of free blocks finding the first block of size = N and allocating N words out of this block. Such an
alocation strategy is called first fit. The algorithm below makes storage allocations using the first fit
strategy. An alternate strategy, best fit, calls for finding a free block whose sizeisascloseto N as
possible, but not lessthan N. This strategy is examined in the exercises.

[]

Figure 4.16 Free List with Head Node Corresponding to figure 4.15

procedure FF(n, p)

/1 AV points to the avail able space |ist which is searched for a node
of size at least n. pis set to the address of a block of size n
that may be allocated. If there is no block of that size then p = 0.

It is assumed that the free |list has a head node with SIZE field = 0//

p LlLnkay: q ] av

file:///C|/E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book1/chap04.htm (39 of 108)7/3/2004 4:01:50 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 4: LINKED LISTS WWW.itdeveIopteam.com

while p # 0 do
if SIZE(p) = n then [SIZE(p) Ll SizE(p) - n
if SIZE(p) = 0 then LINK(q) L LI NK(p)

else p D p + Sl ZE(p)

ret urn]

a L1p; p LI Link (p)

end

/I no block is |arge enough//
end FF

This agorithm is simple enough to understand. In case only a portion of afree block isto be allocated,
the allocation is made from the bottom of the block. This avoids changing any linksin the free list unless
an entire block is allocated. There are, however, two major problems with FF. First, experiments have
shown that after some processing time many small nodes are left in the available space list, these nodes
being smaller than any requests that would be made. Thus, a request for 9900 words allocated from a
block of size 10,000 would leave behind a block of size 100, which may be smaller than any requests
that will be made to the system. Retaining these small nodes on the available space list tends to slow
down the allocation process as the time needed to make an allocation is proportional to the number of
nodes on the available space list. To get around this, we choose some suitable constant = such that if the
allocation of a portion of a node leaves behind a node of size <=, then the entire node is allocated. 1.e.,
we allocate more storage than requested in this case. The second problem arises from the fact that the
search for alarge enough node always begins at the front of the list. Asaresult of this, all the small
nodes tend to collect at the front so that it is necessary to examine several nodes before an allocation for
larger blocks can be made. In order to distribute small nodes evenly along the list, one can begin
searching for a new node from a different point in the list each time arequest is made. To implement
this. the available space list is maintained as a circular list with a head node of size zero. AV now points
to the last node from which an allocation was made. We shall see what the new allocation algorithm
looks like after we discuss what has to be done to free a block of storage.

The second operation is the freeing of blocks or returning nodes to AV. Not only must we return the
node but we also want to recognize if its neighbors are also free so that they can be coalesced into a
single block. Looking back at figure 4.15, we see that if P3 isthe next program to terminate, then rather
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than just adding this node onto the free list to get the freelist of figure 4.17, it would be better to
combine the adjacent free blocks corresponding to P2 and P4, obtaining the free list of figure 4.18. This
combining of adjacent free blocks to get bigger free blocks is necessary. The block allocation algorithm
splits big blocks while making alocations. As aresult, available block sizes get smaller and smaller.
Unless recombination takes place at some point, we will no longer be able to meet large requests for
memory.

[]

Figure 4.17 Available Space List When Adjacent Free Blocks Are Not Coalesced.

[]

Figure 4.18 Available Space List When Adjacent Free Blocks Are Coalesced.

With the structure we have for the available space list, it is not easy to determine whether blocks
adjacent to the block (n, p) (n = size of block and p = starting location) being returned are free. The only
way to do this, at present, isto examine all the nodesin AV to determine whether:

(i) the left adjacent block isfree, i.e., the block ending at p - 1;
(i) the right adjacent block isfree, i.e., the block beginning at p + n.

In order to determine (i) and (ii) above without searching the available space list, we adopt the node
structure of figure 4.19 for allocated and free nodes:

[]

Figure 4.19

Thefirst and last words of each block are reserved for allocation information. The first word of each free
block hasfour fields: LLINK, RLINK, TAG and SIZE. Only the TAG and SIZE field are important for a
block in use. The last word in each free block hastwo fields: TAG and UPLINK. Only the TAG field is
important for ablock in use. Now by just examining thetag at p - 1 and p + n one can determine whether
the adjacent blocks are free. The UPLINK field of afree block points to the start of the block. The
available space list will now be adoubly linked circular list, linked through the fields LLINK and
RLINK. It will have a head node with SIZE = 0. A doubly linked list is needed, as the return block
algorithm will delete nodes at random from AV. The need for UPLINK will become clear when we study
the freeing algorithm. Since the first and last nodes of each block have TAG fields, this system of
allocation and freeing is called the Boundary Tag method. It should be noted that the TAG fieldsin
allocated and free blocks occupy the same bit position in the first and last words respectively. Thisis not
obvious from figure 4.19 where the LLINK field precedesthe TAG field in afree node. The labeling of
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fieldsin thisfigure has been done so asto obtain clean diagrams for the available space list. The
algorithms we shall obtain for the boundary tag method will assume that memory is numbered 1 tom
and that TAG(0) = TAG(m + 1) = 1. Thislast requirement will enable usto free the block beginning at 1
and the one ending at m without having to test for these blocks as special cases. Such atest would
otherwise have been necessary as the first of these blocks has no left adjacent block while the second has
no right adjacent block. While the TAG information isall that is needed in an alocated block, it is
customary to also retain the size in the block. Hence, figure 4.19 also includes a SIZE field in an
allocated block.

Before presenting the allocate and free algorithms let us study the initial condition of the system when
all of memory is free. Assuming memory begins at location 1 and ends at m, the AV list initially looks
like:

[]

While these algorithms may appear complex, they are a direct consequence of the doubly linked list
structure of the available space list and aso of the node structure in use. Notice that the use of a head
node eliminates the test for an empty list in both algorithms and hence simplifies them. The use of
circular linking makes it easy to start the search for a large enough node at any point in the available
gpace list. The UPLINK field in afree block is needed only when returning a block whose left adjacent
block isfree (see lines 18 and 24 of algorithm FREE). The readability of algorithm FREE has been
greatly enhanced by the use of the case statement. In lines 20 and 27 AV is changed so that it always
points to the start of afree block rather than into

procedure ALLOCATE (n, p)

//Use next fit to allocate a block of nenory of size at | east
n, n > 0. The avail able space list is nmaintained as descri bed
above and it is assuned that no bl ocks of size < &£ are to

be retained. pis set to be the address of the first word in

the bl ock allocated. AV points to a node on the available list.//

1 p D RLI NK( AV) /I begin search at p//
2 r epeat
3 if SIZE (p) = n then /I block is big enough//
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6

fromAV//

tags//

9
search//
10

11

12

13

14

unused/ /

15

16

bl ock//

17

www.itdevelopteam.com

[diff L] sizE(p) - n

If diff < = then //allocate whol e bl ock//

[ RLI NK (LLI NK(p)) [] RLI NK( p) /I del ete node

LLI NK( RLI NK( p)) [] LLI NK( p)

TAGp) L] TAGp + SIzE(p) - 1) 11 //set

AV [] LLI NK( p) //set starting point of next

returnj

el se /[/allocate | ower n words//
(sl ze(p) L] diff

UPLINK (p + diff - 1) [1p

TAGQ p + diff - 1) [] 0 /| set upper portion as

AV [] p /I position for next search//

p [] p + diff //set pto point to start of allocated
Sl ZE( p) D n
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18 TAGp) L] TAGp +n - 1) []1
//set tags for allocated bl ock//

19 return]]

20 p [] RLI NK( p) / I exam ne next node on |ist//
21 until p = RLI NK(AV)

22 /I no block | arge enough//

23 pl]o:

24 end ALLOCATE

procedure FREE(p)

//return a bl ock beginning at p and of size Sl ZE(p)//

1 nl]sze(p)
2 case
3 :TAGQ(p - 1) =1 and TAGp + n) = 1:

/ I bot h adj acent bl ocks in use//

4 TAE p) [] TAQp + n - 1) [] 0 //set up a free
bl ock//

5 UPLINK (p +n - 1) []p

6 LLINK(p) ] Av: RUINK (p) L] RLINK (AV)

/linsert at right of AV//

7 LLINK (RLINK(P)) L] p: RUINk(AY) []p
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8 TAGQ(p + n) =1 and TAGp - 1) = O: /lonly left block
freell

9 g L] UPLINK (p- 1) //start of left block//

10 Sl ze(q) L] slzE(q) + n

11 WPLINK(p + n - 1) Llq TAGp +n- 1) Lo

12 :TAQp + n) =0 and TAGp - 1) = 1:

/lonly right adjacent block free//

13 RLI NK(LLINK(p + n)) [] p /I replace bl ock
begi nni ng//

14 LLINK(RLINK(p + n)) L] p /lat p + n by onel/
15 LLINK(p) L] LLINK(p + n) /I begi nning at p//
16 RLINK(p) L] RLINK(p + n)

17 size(p) Lln + Sl zE(p + n)

18 UPLINK(p + SIZE(p) - 1) [ p

19 TAGp) Lo

20 AV ]p

21 el se: //both adjacent blocks free//

22 //delete right free block fromAV list//

RLINK (LLINK(p + n)) [ RLINK (p + n)
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23 LLI NK(RLINK(p + n))LLINK(p + n)

24 q[]UPLINK(p - 1) [lstart of left free
bl ock//

25 SIzE(q) L] SizE(q) + n + SIZE(p + n)

26 UPLINK(q + SIZE(q) - 1) ] q

27 AV L] LLINK(p + n)

28 end

29 end FREE

the middle of afree block. One may readily verify that the algorithms work for special cases such as
when the available space list contains only the head node.

The best way to understand the algorithms is to simulate an example. Let us start with amemory of size
5000 from which the following allocations are made: rq = 300, r, = 600, r3 = 900, r, = 700, rg = 1500

and rg = 1000. At this point the memory configurationis asin figure 4.20. This figure also depicts the

different blocks of storage and the available space list. Note that when a portion of afree block is
allocated, the allocation is made from the bottom of the block so as to avoid unnecessary link changesin
the AV list. First block rq isfreed. Since TAG(5001) = TAG(4700) = 1, no coalescing takes place and

the block isinserted into the AV list (figure 4.21a). Next, block r, is returned. Since both its left adjacent
block (rs) and itsright adjacent block (r3) are in use at this time (TAG(2500) = TAG(3201) =1), this
block isjust inserted into the free list to get the configuration of figure 4.21b. Block r3 is next returned.

Its left adjacent block isfree, TAG(3200) = O; but its right adjacent block is not, TAG(4101) = 1. So,
this block isjust attached to the end of its adjacent free block without changing any link fields (figure
4.21c). Block rg next becomes free. TAG(1000) = 1 and TAG(2501) = 0 and so this block is coal esced

with its right adjacent block which is free and inserted into the spot previously occupied by this adjacent
free block (figure 4.21(d)). r,, isfreed next. Both its upper and lower adjacent blocks are free. The upper

block is deleted from the free space list and combined with r,. This bigger block is now just appended to
the end of the free block made up of r3, r4 and rg (figure 4.21(e)).

[]
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Figure 4.20

[]
[]

Figure 4.21 Freeing of Blocks in Boundary Tag System

[]

Figure 4.21 Freeing of Blocks in Boundary Tag System (contd.)

[]

Figure 4.21 Freeing of Blocks in Boundary Tag System (contd.)

[]

Figure 4.21 Freeing of Blocks in Boundary Tag System (contd.)
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Asfor the computational complexity of the two algorithms, one may readily verify that the time required
to free ablock of storage is independent of the number of free blocksin AV. Freeing a block takes a
constant amount of time. In order to accomplish this we had to pay a price in terms of storage. The first
and last words of each block in use are reserved for TAG information. Though additional spaceis
needed to maintain AV as adoubly linked list, thisis of no consequence as all the storagein AV isfreein
any case. The alocation of ablock of storage still requires a search of the AV list. In the worst case dll
free blocks may be examined.

An dternative scheme for storage allocation, the Buddy System, isinvestigated in the exercises.

4.9 GENERALIZED LISTS

In Chapter 3, alinear list was defined to be a finite sequence of n = 0 elements, Dlﬂn which we
writeas A= (Dl, ...,Dn). The elements of alinear list are restricted to be atoms and thus the only

structural property alinear list hasisthe one of position, i.e. Di precedesDi+1, l=zi<n.ltis
sometimes useful to relax this restriction on the elements of alist, permitting them to have a structure of
their own. This leads to the notion of a generalized list in which the eIementsDi, 1 =i =nmay be either
atomsor lists.
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Definition. A generalized list, A, isafinite sequence of n > 0 elements, Dl, anheretheDi are
either atomsor lists. The elements Di, 1=1i=nwhich are not atoms are said to be the sublists of A.

Thelist A itself iswritten as A= (_, .., [_). Aisthe name of thelist (_L,, ..., _]) and nitslength.
By convention, all list names will be represented by capital letters. Lower case letters will be used to

represent atoms. If n= 1, then Dl isthe head of A while (Dz, Dz) isthe tail of A.

The above definition is our first example of arecursive definition so one should study it carefully. The
definition is recursive because within our description of what alist is, we use the notion of alist. This
may appear to be circular, but it is not. It isacompact way of describing a potentially large and varied
structure. We will see more such definitions later on. Some examples of generalized lists are:

(1) D= () the null or enpty list, its length is zero.

(ii) A

(a, (b,c)) alist of length two; its first elenent is
the atom'a' and its second element is the

linear list (b,c).

(1ii) B=(AA()) a list of length three whose first two
el ements are the lists A the third el ement
the null 1ist.

(iv) C=(a, O a recursive list of length two. C corresponds
to the infinite list C= (a,(a,(a, ...).

Example oneisthe empty list and is easily seen to agree with the definition. For list A, we have
head (A) ='a, tail (A) = ((b,c)).

Thetail (A) aso has ahead and tail which are (b,c) and () respectively. Looking at list B we see that
head (B)) = A, tal (B)) = (A, ())

Continuing we have
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head (tail(B)) = A, tail (tail(B)) = (())
both of which arelists.

Two important consequences of our definition for alist are: (i) lists may be shared by other listsasin
example iii, where list A makes up two of the sublists of list B; and (ii) lists may be recursive asin
example iv. Theimplications of these two consequences for the data structures needed to represent lists
will become evident as we go along.

First, let usrestrict ourselves to the situation where the lists being represented are neither shared nor
recursive. To see where this notion of alist may be useful, consider how to represent polynomialsin
several variables. Suppose we need to devise a data representation for them and consider one typical
example, the polynomial P(x,y,z) =

x10y3 72+ 2x8y372 + 3x8y2 72 + x4y z + B6x3 y4 z + 2yz
One can easily think of a sequentia representation for P, say using

[]

Figure 4.22 Representation of P(X,y,z) using three fields per node

nodes with four fields: COEF, EXPX, EXPY, and EXPZ. But this would mean that polynomialsin a
different number of variables would need a different number of fields, adding another conceptual
inelegance to other difficulties we have already seen with sequential representation of polynomials. If
we used linear lists, we might conceive of a node of the form

[]

These nodes would have to vary in size depending on the number of variables, causing difficultiesin
storage management. The idea of using ageneral list structure with fixed size nodes arises naturaly if
we consider re-writing P(x,y,2) as

(<10 + 2XE)y3 + BERZ + (x4 + 6y + 29)z

Every polynomial can be written in this fashion, factoring out a main variable z, followed by a second
variabley, etc. Looking carefully now at P(x,y,z) we see that there are two termsin the variable z, C22 +
Dz, where C and D are polynomials themselves but in the variables x and y. Looking closer at C(x,y), we
seethat it is of the form Ey3 + Fy2, where E and F are polynomialsin x. Continuing in this way we see
that every polynomial consists of avariable plus coefficient exponent pairs. Each coefficient isitself a
polynomial (in oneless variable) if we regard a single numerical coefficient as a polynomial in zero
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variables.

We can represent P(X,y,2) asalist in the following way using nodes with three fields each, COEF, EXP,
LINK, asin section 4.4. Note that each level has a head node indicating the variable that has been
factored out. Thisvariableis stored in the COEF field.

The list structure of figure 4.22 uses only fixed size nodes. Thereis, however, one difficulty which needs
to be resolved: how do we distinguish between a coefficient and a pointer to another list? Ultimately,
both of these values will be represented as numbers so we cannot readily distinguish between them. The
solution isto add another field to each node. Thisfield called TAG, will be zero if the COEF field truly
contains a numerical coefficient and a one otherwise. Using the structure of figure 4.22 the polynomial
P= 3x2y would be represented as

[]

Notice that the TAG field is set to one in the nodes containing x and y. Thisis because the character
codes for variable names would not really be stored in the COEF field. The names might be too large.
Instead a pointer to another list is kept which represents the name in a symbol table. This setting of TAG
=1 isalso convenient because it allows us to distinguish between a variable name and a constant.

It isalittle surprising that every generalized list can be represented using the node structure:

| TAG = 0/1 | DATA | LINK |

The reader should convince himself that this node structure is adequate for the representation of any list
A. The LINK field may be used as a pointer to the tail of the list while the DATA field can hold an atom
in case head (A) is an atom or be a pointer to the list representation of head (A) in caseitisalist. Using
this node structure, the example listsi-iv have the representation shown in figure 4.23.

[]

Figure 4.23 Representation of Lists i-iv

Recursive Algorithms for Lists
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Now that we have seen a particular example where generalized lists are useful, let us return to their
definition again. Whenever a data object is defined recursively, it is often easy to describe algorithms
which work on these objects recursively. If our programming language does not alow recursion, that
should not matter because we can aways translate a recursive program into a nonrecursive version. To
see how recursion is useful, let us write an algorithm which produces an exact copy of a nonrecursive
list L in which no sublists are shared. We will assume that each node has three fields, TAG, DATA and
LINK, and also that there exists the procedure GETNODE(X) which assigns to X the address of a new
node.

procedure COPY (L)
/L points to a nonrecursive list with no common sublists. COPY

returns a pointer to a newlist which is a duplicate of L//

ptr DO

if L # 0 then

[if TAGL) =OtheanDATA(L) // save an atom/

el se ¢ D COPY( DATA(L)) /I recursion//

r ] copy(LINK(L)) /1 copy tailll

cal | GETNCDE(ptr) /1 get a node//

DATA(ptr) D q; LINK(ptr) D r /| conbi ne head and tail//

TAG(ptr) L] TAGL)]
return (ptr)
end COPY

The above procedure reflects exactly the definition of alist. We immediately see that COPY works
correctly for an empty list. A ssmple proof using induction will verify the correctness of the entire
procedure. Once we have established that the program is correct we may wish to remove the recursion
for efficiency. This can be done using some straightforward rules.
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() At the beginning of the procedure, code isinserted which declares a stack and initializes it to be
empty. In the most general case, the stack will be used to hold the values of parameters, local variables,
function value, and return address for each recursive call.

(ii) The label L1 isattached to the first executable statement.

Now, each recursive call is replaced by a set of instructions which do the following:

(i) Store the values of all parameters and local variablesin the stack. The pointer to the top of the stack
can betreated as global.

(iv) Create theith new label, Li, and storei in the stack. The valuei of thislabel will be used to compute
the return address. This label is placed in the program as described in rule (vii).

(v) Evaluate the arguments of this call (they may be expressions) and assign these valuesto the
appropriate formal parameters.

(vi) Insert an unconditional branch to the beginning of the procedure.

(vii) Attach the label created in (iv) to the statement immediately following the unconditional branch. If
this procedure is afunction, attach the label to a statement which retrieves the function value from the
top of the stack. Then make use of this value in whatever way the recursive program describes.

These steps are sufficient to remove all recursive callsin a procedure. We must now alter any return
statements in the following way. In place of each return do:

(viii) If the stack is empty then execute anormal return.

(ix) therwise take the current values of all output parameters (explicitly or implicitly understood to be of
type out or inout) and assign these values to the corresponding variables which are in the top of the
stack.

(x) Now insert code which removes the index of the return address from the stack if one has been placed
there. Assign this address to some unused variable.

(xi) Remove from the stack the values of all local variables and parameters and assign them to their
corresponding variables.

(xii) If thisisafunction, insert instructions to eval uate the expression immediately following return and
store the result in the top of the stack.
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(xiii) Use the index of the label of the return address to execute a branch to that label.

By following these rules carefully one can take any recursive program and produce a program which
works in exactly the same way, yet which uses only iteration to control the flow of the program. On
many compilers this resultant program will be much more efficient than its recursive version. On other
compilers the times may be fairly close. Once the transformation to iterative form has been
accomplished, one can often simplify the program even further thereby producing even more gainsin
efficiency. These rules have been used to produce the iterative version of COPY which appears on the
next page.

It is hard to believe that the nonrecursive version is any more intelligible than the recursive one. But it
does show explicitly how to implement such an algorithm in, say, FORTRAN. The non-recursive
version does have some virtues, namely, it is more efficient. The overhead of parameter passing on most
compilersis heavy. Moreover, there are optimizations that can be made on the latter version, but not on
the former. Thus,

procedure COPY(L)

/] nonr ecur si ve version//

i D O //initialize stack index//

1. ptr DO

if L ¥ 0 then

[if TAGL) =0

then q L] DATA(L)

el se [ STACK(i + 1) D q /I stack | ocal variables//
STACK(i + 2) [

STACK(i + 3) L] ptr

STACK(i + 4) D L [ stack paraneter//

STACK(i + 5) D 2 [/ stack return address//
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L [] DATA(L); go to 1 /'l set paraneter and
begi n//
2: q [] STACK( i) /I remove function val ue//

i L1 - 1

STACK(i + 1) Llq; stack(i +2) Llr //stack

vari abl es and//

STACK(i + 3) [l ptr: stack(i + 4) []L

/| paraneter for second//

STACK(i + 5) [] 3; [] I 45 /Il recursive call//
L L] LINKL): goto 1

3: r [] STACK(i); i [] [ [] 1 // renmove function val ue//

cal | GETNODE(ptr)
DATA(ptr) [l q Link(ptr) [

TAG(ptr) | TAG(L)]

if i # 0 then [addr [ | sTack(i): L L] stack(i - 1)

/| execute a return//
t [ ] stack(i - 2); r L] stack(i - 3)
q LI stack(i - 4):
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STACK(1 - 4) Dptr; ptr Dt //store function

val ue//

[ Di - 4; go to addr] // branch to 2 or 3//

return (ptr)

end COPY

both of these forms have their place. We will often use the recursive version for descriptive purposes.
Now let us consider the computing time of this algorithm. The null

[]

Figure 4.24 Linked Representation for A

list takes a constant amount of time. For the list

A =((ab),((c.d).e)

which has the representation of figure 4.24 L takes on the values given in figure 4.25.

Level s of Cont i nui ng Cont i nui ng

recursion Value of L Level s L Level s L
1 q 2 r 3 u
2 S 3 u 4 %
3 t 4 w 5 o]
4 0 5 X 4 \Y;
3 t 6 0 3 u
2 S 5 X 2 I
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1 q 4 w 3 o]
2 r
1 q

Figure 4.25 Values of Parameter in Execution of COPY(A)

The sequence of values should be read down the columns. g, 1, s, t, u, v, w, X are the addresses of the
eight nodes of the list. From this particular example one should be able to see that nodes with TAG =0
will be visited twice, while nodes with TAG= 1 will be visited three times. Thus, if alist hasatotal of m
nodes, no more than 3m executions of any statement will occur. Hence, the algorithm is O(m) or linear
which is the best we could hope to achieve. Another factor of interest is the maximum depth of recursion
or, equivaently, how many locations one will need for the stack. Again, by carefully following the
algorithm on the previous example one sees that the maximum depth is a combination of the lengths and

depths of all sublists. However, a simple upper bound to useis m, the total number of nodes. Though this
bound will be extremely large in many cases, it is achievable, for instance, if

L= ((((()))))-

Another procedure which is often useful is one which determines whether two lists areidentical. This
means they must have the same structure and the same data in corresponding fields. Again, using the
recursive definition of alist we can write a short recursive program which accomplishes this task.

procedure EQUAL(S, T)
/1S and T are nonrecursive lists, each node having three fields: TAG
DATA and LINK. The procedure returns the value true if the

|ists are identical else false//

ans D fal se

case

S =0and T = 0: ansDtrue

S F 0 and T #F 0:
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then [if TAGS) = 0
then ans || DATA (S) = DATA(T)

el se ans || EQUAL( DATA(S), DATA(T))

I f ans then

ans D EQUAL( LI NK(S), LINK(T))]
end

return (ans)

end EQUAL

Procedure EQUAL is afunction which returns either the value true or false. Its computing timeis
clearly no more than linear when no sublists are shared since it looks at each node of Sand T no more
than three times each. For unequal lists the procedure terminates as soon asit discovers that the lists are
not identical.

Another handy operation on nonrecursive listsis the function which computes the depth of alist. The
depth of the empty list is defined to be zero and in general

Procedure DEPTH isavery close transformation of the definition which isitself recursive.

By now you have seen severa programs of this type and you should be feeling more comfortable both
reading and writing recursive algorithms. To convince yourself that you understand the way these work,
try exercises 37, 38, and 39.

procedure DEPTH(S)
/1S is a nonrecursive list having nodes with fields TAG DATA an

LI NK. The procedure returns the depth of the list//
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rraxDO

iIf S =0 then return (nmax) /[Inull list has zero depth//

ptr DS

while ptr # 0 do
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if TAG(ptr) = 0 then ans [_] 0
el se ans D DEPTH( DATA(ptr)) [/ recursion//
I f ans > max t hen rraxDans [1find a new maxi nmunt/

pt rDLI NK( ptr)
end
return (max + 1)

end DEPTH

Reference Counts, Shared and Recursive Lists

In this section we shall consider some of the problems that arise when lists are allowed to be shared by
other lists and when recursive lists are permitted. Sharing of sublists can in some situations result in
great savings in storage used, asidentical sublists occupy the same space. In order to facilitate ease in
specifying shared sublists, we extend the definition of alist to alow for naming of sublists. A sublist
appearing within alist definition may be named through the use of alist name preceding it. For example,
inthelist A= (a,(b,c)), the sublist (b,c) could be assigned the name Z by writing A = (a,Z(b,c)). In fact,
to be consistent we would then write A(a,Z(b,c)) which would define the list A as above.

Liststhat are shared by other lists, such aslist A of figure 4.23, create problems when one wishes to add
or delete anode at the front. If the first node of A isdeleted, it is necessary to change the pointers from
the list B to point to the second node. In case a new node is added then pointers from B have to be
changed to point to the new first node. However, one normally does not know all the points from which
aparticular list is being referenced. (Even if we did have this information, addition and deletion of nodes
could require alarge amount of time.) This problem is easily solved through the use of head nodes. In
case one expects to perform many add/deletes from the front of lists, then the use of a head node with
each list or named sublist will eliminate the need to retain alist of al pointersto any specific list. If each
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list isto have a head node, then listsi-iv are represented asin figure 4.26. The TAG field of head nodes
Is not important and is assumed to be zero. Even in situations where one does not wish to dynamically
add or delete nodes from lists. ai in the case of multivariate polynomials, head nodoes prove usefull in
determining when the nodes of a particular structure may be returned to the storage pool. For example,

let T and U be program variables pointing to the two polynomials 3x4 + 5x3 + 7x)y3 and (3x4 + 5x3 + 7X)
y6 + (6X)y of figure 4.27. If PERASE(X) is all algorithm to erase the polynomial X, then acall to
PERASE(T) should not return the nodes corresponding to the coefficient 3x4 + 5x3 + 7x since this sublist
isalso part of U.

Thus, whenever lists are being shared by other lists, we need a mechanism to help determine whether or
not the list nodes may be physically returned to the available space list. This mechanism is generaly
provided through the use of areference count maintained in the head node of each list. Since the DATA
field of the head nodes is free, the reference count is maintained in this field. This reference count of a
list isthe number of pointers (either program variables or pointers from other lists) to that list. If the lists

I-iv of figure 4.26 are accessible viathe program variables X, Y, Z and W, then the reference counts for
thelists are:

(i) REF(X) = 1 accessible only via X

(it) REF(Y) = 3 pointed to by Y and two points from Z

(iii) REF(Z) = 1 accessible only viaZ

(iv) REF(W) = 2 two pointersto list C

Now acall to LERASE(T) (list erase) should result only in a

[]

Figure 4.26 Structure with Head Nodes for Lists i-iv

Figure 4.27 T = (3x4 + 5x3 + 7x)y3 U = (3x4 + 5x3 + 7x)y6 + 6xy

decrementing by 1 of the reference counter of T. Only if the reference count becomes zero are the nodes
of T to be physically returned to the available space list. The same isto be done to the sublists of T.

Assuming the structure TAG, REF, DATA, LINK, an algorithm to erase alist X could proceed by
examining the top level nodes of alist whose reference count has become zero. Any sublists encountered
are erased and finally, the top level nodes are linked into the available space list. Since the DATA field
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of head nodes will usually be unused, the REF and DATA fields would be one and the same.
procedur e LERASE( X)

/lrecursive algorithmto erase a |list assumng a REF field in each
head node which has the nunber of pointers to this list and a

TAG field such that TAGX) = 0 if DATA(X) is actually an atom

and TAGX) =1 if DATA(X) is a link to a sublist. The storage

pool is assuned |linked through the field LINK with AV pointing

to the first node in the pool//

REF( X) D REF(X) - 1 /I decrenent reference count//

if REF(X) # 0 then return

YDX// Y wll traverse top |evel of X/

while LINK(Y) #F 0 do

Yy L] Linkey
If TAGY) = 1 then call LERASE (DATA (Y))// recursion//

end

LI NK(Y) D AV [lattach top |level nodes to avail list//

av [ x
end LERASE

A call to LERASE(Y) will now only have the effect of decreasing the reference count of Y to 2. Such a
call followed by acall to LERASE(Z) will result in:
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(i) reference count of Z becomes zero;

(ii) next node is processed and REF(Y) reducesto 1;

(iii) REF(Y) becomes zero and the five nodes of list A(a,(b,c)) are returned to the available space list;
(iv) the top level nodes of Z are linked into the available space list

The use of head nodes with reference counts solves the problem of determining when nodes are to be
physically freed in the case of shared sublists. However, for recursive lists, the reference count never
becomes zero. LERASE(W) just results in REF(W) becoming one. The reference count does not become
zero even though thislist is no longer accessible either through program variables or through other
structures. The sameis true in the case of indirect recursion (figure 4.28). After callsto LERASE(R) and
LERASE(S), REF(R) = 1 and REF(S= 2 but the structure consisting of R and Sisno longer being used
and so it should have been returned to available space.

[]

Figure 4.28 Indirect Recursion of Lists A and B Pointed to by Program Variables R and S.

Unfortunately, there is no ssmple way to supplement the list structure of figure 4.28 so asto be able to
determine when recursive lists may be physically erased. It isno longer possible to return all free nodes
to the available space list when they become free. So when recursive lists are being used, it is possible to
run out of available space even though not all nodes are in use. When this happens, it is possible to
collect unused nodes (i.e., garbage nodes) through a process known as garbage collection. Thiswill be
described in the next section.

4.10 GARBAGE COLLECTION AND COMPACTION

Asremarked at the close of the last section, garbage collection is the process of collecting all unused
nodes and returning them to available space. This processis carried out in essentially two phases. In the
first phase, known as the marking phase, all nodes in use are marked. In the second phase all unmarked
nodes are returned to the available space list. This second phaseistrivial when all nodes are of afixed
size. In this case, the second phase requires only the examination of each node to see whether or not it
has been marked. If there are atotal of n nodes, then the second phase of garbage collection can be
carried out in O(n) steps. In this situation it is only the first or marking phase that is of any interest in
designing an algorithm. When variable size nodes are in usg, it is desirable to compact memory so that
all free nodes form a contiguous block of memory. In this case the second phase is referred to as
memory compaction. Compaction of disk space to reduce average retrieval time is desirable even for
fixed size nodes. In this section we shall study two marking algorithms and one compaction algorithm.
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Marking

In order to be able to carry out the marking, we need a mark bit in each node. It will be assumed that this
mark bit can be changed at any time by the marking algorithm. Marking algorithms mark all directly
accessible nodes (i.e., nodes accessible through program variables referred to as pointer variables) and
also al indirectly accessible nodes (i.e., nodes accessible through link fields of nodesin accessible lists).
It is assumed that a certain set of variables has been specified as pointer variables and that these
variables at all times are either zero (i.e., point to nothing) or are valid pointersto lists. It is also assumed
that the link fields of nodes always contain valid link information.

Knowing which variables are pointer variables, it is easy to mark al directly accessible nodes. The
indirectly accessible nodes are marked by systematically examining all nodes reachable from these
directly accessible nodes. Before examining the marking algorithms let us review the node structure in
use. Each node regardless of its usage will have a one bit mark field, MARK, aswell as a one bit tag
field, TAG. Thetag bit of anode will be zero if it contains atomic information. The tag bit is one
otherwise. A node with atag of one hastwo link fields DLINK and RLINK. Atomic information can be
stored only in a node with tag 0. Such nodes are called atomic nodes. All other nodes are list nodes. This
node structure is slightly different from the one used in the previous section where a node with tag 0
contained atomic information aswell asa RLINK. It isusually the case that the DLINK field istoo
small for the atomic information and an entire node is required. With this new node structure, thelist (a,
(b)) isrepresented as:

[]

Both of the marking algorithms we shall discuss will require that al nodes be initially unmarked (i.e.
MARK(i) = 0for al nodesi) . In addition they will require MARK(0) = 1 and TAG(0) = 0. Thiswill
enable us to handle end conditions (such as end of list or empty list) easily. Instead of writing the code
for thisin both algorithms we shall instead write adriver algorithm to do this. Having initialized all the
mark bits aswell as TAG(0), thisdriver will then repeatedly call a marking algorithm to mark all nodes
accessible from each of the pointer variables being used. The driver algorithm is fairly smple and we
shall just state it without further explanation. In line 7 the algorithm invokes MARK 1. In case the second
marking algorithm is to be used this can be changed to call MARK2. Both marking algorithms are
written so as to work on collections of lists (not necessarily generalized lists as defined here).

procedure DRI VER
//driver for marking algorithm n is the nunber of nodes in the

systenm/

1  fori Ll1tondo //unmark all nodes//
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2 MARK (i) [ o
3 end
4  MARK (0) L1 TAG (0) [L]o / / boundary conditions//

5 for each pointer variable X wth MARK (X) = 0 do

6 MARK (X) | 1
7 I f TAGX) = 1 then call MARKL(X) /I X is a list node//
8 end

9 end DRI VER

The first marking algorithm MARK1(X) will start from the list node X and mark all nodes that can be
reached from X via a sequence of RLINK's and DLINK's; examining all such paths will result in the
examination of all reachable nodes. While examining any node of type list we will have achoice asto
whether to move to the DLINK or to the RLINK. MARK 1 will move to the DLINK but will at the same
time place the RLINK on a stack in case the RLINK isalist node not yet marked. The use of this stack
will enable usto return at alater point to the RLINK and examine all paths from there. This strategy is
similar to the one used in the previous section for LERASE.

Analysis of MARK1

Inline5 of MARK1 we check to seeif Q= RLINK(P) can lead to other unmarked accessible nodes. If
so, Q is stacked. The examination

procedure MARK1 (X)
[/ Xi1s alist node. Mark all nodes accessible fromX It is assunmed
that MARK(0) = 1 and TAG0) = 0. ADD and DELETE

performthe standard stack operations//

1 PDX; initialize stack
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2 | oop //follow all paths fromP, Pis a marked |ist node//
3 | oop /I move downwards stacking RLINK's if needed//

4 ol ] RUINK (P)

5 If TAGQ =1 and MARK(Q = 0 then call ADD(Q

|/ stack Q/

6 MARK(Q) || 1 //Q may be atonic//

7 P[] DLinK (P)

/ I any unmar ked nodes accessible from P?//

8 I f MARK(P) =1 or TAGP) = 0 then exit

9 MARK(P) || 1

10 forever

11 MARK( P) [] 1 /1P may be an unmarked atom c node//
12 I f stack enpty then return /lall accessible nodes

mar ked/ /

13 cal | DELETE(P) [ lunstack P//

14 forever

15 end MARK1

of nodes continues with the node at DLINK(P). When we have moved downwards as far asis possible,
line 8, we exit from the loop of lines 3-10. At this point we try out one of the alternative moves from the
stack, line 13. One may readily verify that MARK 1 does indeed mark all previously unmarked nodes
which are accessible from X.

In analyzing the computing time of this algorithm we observe that on each iteration (except for the last)
of the loop of lines 3-10, at least one previously unmarked node gets marked (line 9). Thus, if the outer
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loop, lines 2-14, isiterated r times and the total number of iterations of the inner loop, lines 3-10, isp
then at least g = p - r previously unmarked nodes get marked by the algorithm. Let m be the number of
new nodes marked. Then m= q = p - r. Also, the number of iterations of the loop of lines 2-14 isone
plus the number of nodes that get stacked. The only nodes that can be stacked are those previously
unmarked (line 5). Once anode is stacked it gets marked (line 6). Hencer = m + 1. From this and the
knowledge that m = p - r, we conclude that p = 2m + 1. The computing time of the algorithmis O(p + r).
Substituting for p and r we obtain O(m) as the computing time. Thetimeislinear in the number of new
nodes marked! Snce any algorithm to mark nodes must spend at least one unit of time on each new node
marked, it follows that there is no algorithm with a time less than O(m). Hence MARK1 is optimal to
within a constant factor (recall that 2m = O (m) and 10m = O(m)).

Having observed that MARK 1 is optimal to within a constant factor you may be tempted to sit back in
your arm chair and relish amoment of smugness. There is, unfortunately, a serious flaw with MARK 1.
Thisflaw is sufficiently serious as to make the algorithm of little use in many garbage collection
applications. Garbage collectors are invoked only when we have run out of space. This meansthat at the
time MARK1 isto operate, we do not have an unlimited amount of space available in which to maintain
the stack. In some applications each node might have afree field which can be used to maintain alinked
stack. In fact, if variable size nodes are in use and storage compaction is to be carried out then such a
field will be available (see the compaction algorithm COMPACT). When fixed size nodes are in use,
compaction can be efficiently carried out without this additional field and so we will not be able to
maintain alinked stack (see exercises for another special case permitting the growth of alinked stack).
Realizing this deficiency in MARKY1, let us proceed to another marking algorithm MARK2. MARK 2
will not require any additional space in which to maintain a stack. Its computing is also O(m) but the
constant factor here is larger than that for MARK 1.

Unlike MARK1(X) which does not alter any of the linksin the list X, the algorithm MARK2(X) will
modify some of these links. However, by the timeit finishesits task the list structure will be restored to
itsoriginal form. Starting from alist node X, MARK2 traces all possible paths made up of DLINK's and
RLINK's. Whenever a choice isto be made the DLINK direction is explored first. Instead of maintaining
astack of alternative choices (as was done by MARK1) we now maintain the path taken from X to the
node P that is currently being examined. This path is maintained by changing some of the links along the
path from X to P.

Consider the example list of figure 4.29(a). Initialy, all nodes except node A are unmarked and only
node E is atomic. From node A we can either move down to node B or right to node |. MARK?2 will
always move down when faced with such an alternative. We shall use P to point to the node currently
being examined and T to point to the node preceding P in the path from X to P. The path T to X will be
maintained as a chain comprised of the nodes on this T- X path. If we advance from node P to node Q
then either Q = RLINK(P) or Q = DLINK(P) and Q will become the node currently being examined .
The node preceding Q on the X - Q path is P and so the path list must be updated to represent the path
from P to X. Thisis simply done by adding node P to the T - X path already constructed. Nodes will be
linked onto this path either through their DLINK or RLINK field. Only list nodes will be placed onto
this path chain. When node P is being added to the path chain, P islinked to T viaits DLINK field if Q
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= DLINK(P). When Q = RLINK(P), Pislinked to T viaits RLINK field. In order to be able to
determine whether a node on the T- X path list is linked through its DLINK or RLINK field we make use
of thetag field. Notice that since the T- X path list will contain only list nodes, the tag on all these nodes
will be one. When the DLINK field is used for linking, this tag will be changed to zero. Thus, for nodes
onthe T - X path we have:

[]
[]

Figure 4.29 Example List for MARK2

[]
[]

A B CDVF GF DO CDBMHDBAI J I A
(e) Path taken by P

Figure 4.29 Example List for MARK2 (contd.)

[]

The tag will be reset to 1 when the node gets off the T - X path list.

Figure 4.29(b) showsthe T - X path list when node P is being examined. Nodes A, B and C have atag of
zero indicating that linking on these nodes isviathe DLINK field. Thisaso impliesthat in the origina
list structure, B = DLINK(A), C = DLINK(B) and D = P = DLINK(C). Thus, the link information
destroyed while creating the T- X path list is present in the path list. Nodes B, C, and D have aready
been marked by the algorithm. In exploring P we first attempt to move down to Q = DLINK(P) =E. Eis
an atomic node so it gets marked and we then attempt to move right from P. Now, Q = RLINK(P) = F.
Thisisan unmarked list node. So, we add P to the path list and proceed to explore Q. Since P islinked
to Q by its RLINK field, the linking of P onto the T - X path is made throught its RLINK field. Figure
4.29(c) showsthe list structure at the time node G is being examined. Node G is a deadend. We cannot
move further either down or right. At this time we move backwards on the X-T path resetting links and
tags until we reach a node whose RLINK has not yet been examined. The marking continues from this
node. Because nodes are removed from the T - X path list in the reverse order in which they were added
toit, thislist behaves as a stack. The remaining details of MARK?2 are spelled out in the formal
SPARKS agorithm. The same driver asfor MARK 1 is assumed.

procedure MARK 2( X)
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[/ sanme function as MARK1//

/it is assuned that MARK(0) = 1 and TAG0) = 0//

1 pPllx tllo //initialize T- X path list//

2 repeat

3 o] oLink(p) //go down list//

4 case

5 - MARK(Q = 0 and TAGQ = 1: /1 Qis an unexam ned
i st node//

6 MARK(Q L1 1; Tagp) o

7 pLinkP) LT TP //add Pto T - X path list//
8 PDQ /I nmove down to explore Q/

9 el se: //Qis an atom or already exam ned//

10 MARK(Q || 1

11 L1: QL RUNKP)  //move right of PI/

12 case

13 - MARK(Q = 0 and TAGQ = 1: /I explore Q
further//

14 MARK(Q | 1

15 RUNK (P) LT TL]p
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16 PpL]o

17 cel se: MARK(Q D 1 [1Qis not to be explored;

back up on path list//

18 while T # 0 do //while path Iist not enpty//
19 oLl

20 If TAGQ =0 /[11ink to P through DLINK//
21 then [T < DLINK(Q; DLINK (Q [P

22 TAGQ L1 1. PL]Q goto Ly

/IPis node to right of Q/

23 TLIRINKQ; RUNKQ [P
24 pLI]o

25 end

26 end

27 end

28 until T=0

29 end MARK 2

Analysis of MARK?2

The correctness of MARK?2 may be proved by first showing that the T - X path list is aways maintained
correctly and that except when T = 0 it is the case that the node T was previously linked to P. Once this
has been shown, it is a simple matter to show that the backup procedure of lines 17-25 restructures the
list X correctly. That all paths from X are examined follows from the observation that at every list node
when aDLINK path is used, that node gets added to the path list (lines 6-8) and that backing up along
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the T - X path stops when a node whose RLINK hasn't yet been examined is encountered (lines 20-22).
The details of the proof are |eft as an exercise. One can also show that at the time the algorithm
terminates P = X and so we need not use two distinct variables P and X.

Figure 4.29(e) shows the path taken by P on the list of 4.29(a). It should be clear that alist node
previously unmarked gets visited at most three times. Except for node X, each time a node already
marked is reached at |east one previously unmarked node is also examined (i.e. the one that led to this
marked node). Hence the computing time of MARK 2 is O(m) where m is the number of newly marked
nodes. The constant factor associated with mis, however, larger than that for MARK1 but MARK 2 does
not require the stack space needed by MARK 1. A faster marking algorithm can be obtained by
judiciously combining the strategies of MARK 1 and MARK2 (see the exercises).

When the node structure of section 4.9 isin use, an additional one bit field in each node is needed to
implement the strategy of MARK2. Thisfield is used to distinguish between the case when aDLINK is
used to link into the path list and when a RLINK is used. The already existing tag field cannot be used as
some of the nodes on the T- X path list will originaly have atag of O while otherswill have atag of 1
and so it will not be possible to correctly reset tag values when nodes are removed fromthe T - X list.

Storage Compaction

When all requests for storage are of afixed size, it isenough to just link all unmarked (i.e., free) nodes
together into an available space list. However, when storage requests may be for blocks of varying sizes,
it isdesirable to compact storage so that all the free space forms one contiguous block. Consider the
memory configuration of figure 4.30. Nodesin use have aMARK bit = 1 while free nodes have their

MARK bit = 0. The nodes are labeled 1 through 8, with n;, 1 =i = 8 being the size of the ith node.

[]

Figure 4.30 Memory Configuration After Marking. Free Nodes Have MARK bit = O

The free nodes could be linked together to obtain the available space list of figure 4.31. While the total
amount of memory availableisn, + nz + ng + ng, arequest for this much memory cannot be met since

the memory is fragmented into 4 nonadjacent nodes. Further, with more and more use of these nodes,
the size of free nodes will get smaller and smaller.

[]

Figure 4.31 Available Space List Corresponding to Figure 4.30

Ultimately, it will be impossible to meet requests for al but the smallest of nodes. In order to overcome
this, it is necessary to reallocate the storage of the nodes in use so that the used part of memory (and
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hence also the free portion) forms a contiguous block at one end asin figure 4.32. This reallocation of
storage resulting in a partitioning of memory into two contiguous blocks (one used, the other free) is
referred to as storage compaction. Since there will, in general, be links from one node to another, storage
compaction must update these links to point to the relocated address of the respective node. If node n,

starts at location |; before compaction and at I'; after compaction, then all link referencesto |; must also
be changed to I'; in order not to disrupt the linked list structures existing in the system. Figure 4.33(a)

shows a possible link configuration at the time the garbage collection processisinvoked. Links are
shown only for those nodes that were marked during the marking phase. It is assumed that there are only
two links per node. Figure 4.33(b) shows the configuration following compaction. Note that the list
structure is unchanged even though the actual addresses represented by the links have been changed.
With storage compaction we may identify three tasks: (i) determine new addresses for nodesin usg; (ii)
update all linksin nodesin use; and (iii) relocate nodes to new addresses. Our storage compaction
algorithm, COMPACT, isfairly straightforward, implementing each of these three tasks in a separate
scan of memory. The algorithm assumes that each node, free or in use, has a SIZE field giving the length
of the node and an additional field, NEW_ADDR, which may be used to store the relocated address of
the node. Further, it is assumed that each node has two link fields LINK1 and LINK2. The extension of
the algorithm to the most general situation in which nodes have a variable number of linksis simple and
requires only a modification of phase 1.

Figure 4.32 Memory Configuration After Reallocating Storage to Nodes in Use

Figure 4.33

In analyzing this algorithm we see that if the number of nodes in memory is n, then phases| and Il each
require n iterations of their respective

procedure COVPACT( MEMORY, MARK, SI ZE, M NEW __ADDR)

/| conpact storage follow ng the marking phase of garbage collection.
Nodes in use have MARK bit=1. Sl ZE(i)= nunber of words

in that node. NEW_ADDR is a free field in each node. Menory

Is addressed 1 to Mand is an array MEMORY.//
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/I phase |: Scan nenory fromleft assigning new addresses to nodes

I n use. AV = next avail able word//

AV [] 1:i [] 1 [/variable i will scan all nodes left to
right//

while i = Mdo

if MARK(i) = 1 then [//rel ocate node//
NEW ADDR(i) [ av

Av ] Aav + s zE(i)]

i L]i + sizei) /I next nodel/
end
/I phase I'l: update all links. Assune the existence of a fictitious

node with address zero and NEW_ADDR(0) = 0//

i [

while i = Mdo

if MARK(i) = 1 then [//update all links to reflect new

addr esses/ /

LI NKL(i ) (] NEW ADDR(LI NK1(i))
LI NK2(i ) || NEw ADDR( LI NK2(i))]
[0+ size(i)

end
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/I phase Ill: rel ocate nodes//

i [

while i = Mdo

if MARK (i) = 1 then [//relocate to NEW ADDR(i)//
k L] newabDr(i); | [k

for j L toi + sizE(i) - 1 do

MEMORY( k) || MEMORY(j)

ka+1

end

i i+ sizE(1)]
else i L]i + slzEi)
end

end COVPACT

while loops. Since each iteration of these loops takes a fixed amount of time, the time for these two
phasesis O(n). Phase Il1, however, will in general be more expensive. Though the while loop of this
phase is also executed only n times, the time per iteration depends on the size of the node being
relocated. If sisthe amount of memory in use, then the time for this phaseis O(n + s). The overal
computing timeis, therefore, O(n + s). The value of AV at the end of phase | marks the beginning of the
free space. At the termination of the algorithm the space MEMORY (AV) to MEMORY (M) is free space.
Finally, the physical relocation of nodesin phase 1l can be carried out using along shift in case your
computer has this facility.

In conclusion, we remark that both marking and storage compaction are slow processes. The time for the
former is O (number of nodes) while the time for the latter is O (number of nodes + Z size of nodes
relocated)). In the case of generalized lists, garbage collection is necessitated by the absence of any other
efficient means to free storage when needed. Garbage collection has found use in some programming
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languages where it is desirable to free the user from the task of returning storage. In both situations, a
disciplined use of pointer variables and link fieldsis required. Clever coding tricks involving illegal use
of link fields could result in chaos during marking and compaction. While compaction has been
presented here primarily for use with generalized list systems using nodes of variable size, compaction
can also be used in other environments such as the dynamic storage allocation environment of section
4.8. Even though coalescing of adjacent free blocks takes place in algorithm FREE of section 4.8, itis
still possible to have several small nonadjacent blocks of memory free. The total size of these blocks
may be large enough to meet arequest and it may then be desirable to compact storage. The compaction
algorithm in this case is simpler than the one described here. Since all addresses used within a block will
be relative to the starting address rather than the absolute address, no updating of links within ablock is
required. Phases | and |11 can, therefore, be combined into one phase and phase || eliminated atogether.
Since compaction is very slow one would like to minimize the number of timesit is carried out. With the
introduction of compaction, severa alternative schemes for dynamic storage management become
viable. The exercises explore some of these alternatives.

4.11 STRINGS--A CASE STUDY

Suppose we have two character strings S= "X; ... Xy and T ='y; ... y,y". The characters x;,y; come from a

set usually referred to as the character set of the programming language. The value n is the length of the
character string T, an integer which is greater than or equal to zero. If n = 0 then T is called the empty or
null string. In this section we will discuss several alternate ways of implementing strings using the
techniques of this chapter.

We begin by defining the data structure STRING using the axiomatic notation. For a set of operations
we choose to model this structure after the string operations of PL/I. These include:

(i) NULL produces an instance of the null string;

(>i1) ISNULL returnstrueif the string is null else false;

(i) IN takes a string and a character and insertsit at the end of the string;
(iv) LEN returns the length of a string;

(v) CONCAT places a second string at the end of the first string;

(vi) SUBSTR returns any length of consecutive characters;

(vii) INDEX determinesif one string is contained within another.

We now formally describe the string data structure.
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structure STRI NG

decl are NULL( ) D string; I'SNULL (string) D bool ean
IN (string, char) D string; LEN (string) D I nt eger
CONCAT (string, string) D string

SUBSTR (string, integer, integer) D string

LI NK_DEST 3184string, string) D I nt eger;

for all S, T € string, i,j € integer, c,d & char |et
I SNULL (NULL) :: = true; ISNULL (IN(S,c)) :: = false
LEN (NULL) :: = 0; LEN (IN(S,c)) :: =1 + LEN(S)
CONCAT (S, NULL):: =S

CONCAT (S, IN(T,c)) :: = 1IN (CONCAT (S, T),c)

SUBSTR (NULL,i,j):: = NULL

SUBSTR (IN(S,c),i,j) :: =

if j =0or i +j - 1>LEN(IN(S,c)) then NULL
else if i +j - 1 = LEN(IN(S,c))

then I N(SUBSTR (S,i,j - 1),¢c)

el se SUBSTR(S,i,]j)

| NDEX (S, NULL) :: = LEN (S) + 1

| NDEX (NULL, IN(T,d)) :: =0
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if ¢ =d and INDEX(S, T) = LEN(S) - LEN(T) + 1

then INDEX(S, T) else INDEX(S,IN(T,d))

end

end STRI NG

As an example of how these axioms work, let S= "abcd'. Thiswill be represented as
IN(IN(IN(IN(NULL ,a),b),c),d).

Now suppose we follow the axioms as they apply to SUBSTR(S2,1). By the SUBSTR axioms we get

SUBSTR(S, 2, 1) = SUBSTR(I N(I N(I N(NULL, a), b), c), 2, 1)

SUBSTR(I N(I N( NULL, a), b), 2, 1)

| N( SUBSTR( | N(NULL, a) , 2, 0), b)

| N( NULL, b)

='Db'

Suppose we try another example, SUBSTR(S,3,2)

| N( SUBSTR( I N(I N(I N(NULL, a), b), ¢), 3, 1), d)

| N(1 N( SUBSTR( I N(I N(NULL, a), b), 3, 0), c), d)

I N(I N( NULL, c), d)
= 'cd'

For the readers amusement try to simulate the steps taken for INDEX(ST) where T= 'bc' = IN(IN
(NULL,b),c).

4.11.1 DATA REPRESENTATIONS FOR STRINGS
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In deciding on a data representation for a given data object one must take into consideration the cost of
performing different operations using that representation. In addition, a hidden cost resulting from the
necessary storage management operations must also be taken into account. For strings, all three types of
representation: sequential, linked list with fixed size nodes, and linked list with variable size nodes, are
possible candidates. Let uslook at the first two of these schemes and evaluate them with respect to
storage management as well as efficiency of operation. We shall assume that the available memory isan
array C of size n and that each element of C islarge enough to hold exactly one character.

On most computers this will mean that each element of C uses only afraction of aword and hence
several such elements will be packed into one word. On a 60 bit per word machine requiring 6 bits per
character, each word will be able to hold 10 characters. Thus, C(1) through C(10) will occupy one word,
C(11) thru C(20) another and so on.

Sequential. In this representation successive characters of a string will be placed in consecutive
character positionsin the vector C. The string S="Xy, ...,X, could then be represented as in figure 4.34

with Sapointer to the first character. In order to facilitate easy length determination, the length of string
Scould be kept in another variable, .. Thus, we would have SL = n. SUBSTRING SUBSTR (S ,k -] +
) could be done now by copying over the characters X;,..., X, from locations C(S+ j - 1) through C(S+ k

- 1) into afree space. The length of the string created would be k - j + 1 and the time required O(k - | +

1) plus the time needed to locate a free space big enough to hold the string. CONCAT (S T) could
similarly be carried out; the length of the resulting string would be SL + TL. For storage management
two possibilities exist. The boundary tag scheme of section 4.8 could be used in conjunction with the
storage compaction strategies of section 4.10. The storage overhead would be enormous for small
strings. Alternatively, we could use garbage collection and compaction whenever more free space was
needed . Thiswould eliminate the need to return free spaces to an available space list and hence simplify
the storage allocation process (see exercises).

[]

Figure 4.34 Sequential Representation of S ='Xq ... x,'

While a sequential representation of strings might be adequate for the functions discussed above, such a
representation is not adequate when insertions and deletions into and from the middle of astring are
carried out. Aninsertion of 'y, ..., y,,' after thei-th character of Swill, in general require copying over

the characters xy, ...,x followed by y,, ...y, and then X, 1 ,...,X, into anew free area (see figure 4.35).

The time required for thisis O(n + m). Deletion of a substring may be carried out by either replacing the
deleted characters by a special symbol & or by compacting the space originally occupied by this
substring (figure 4.36). The former entails storage waste while the latter in the worst case takes time
proportional to LENGTH(S). The replacement of a substring of Sby another string T is efficient only if
the length of the substring being replaced is equal to LENGTH(T). If thisis not the case, then some form
of string movement will be required.
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[]

Figure 4.35 Insertion Into a Sequential String

[]

Figure 4.36 Deletion of a Substring
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Linked List--Fixed Size Nodes. An alternative to sequentia string representation is alinked list
representation. Available memory is divided into nodes of afixed size. Each node hastwo fields: DATA
and LINK. The size of anode isthe number of characters that can be stored in the DATA field. Figure
4.37 shows the division of memory into nodes of size 4 with alink field that is two characterslong. On a
computer with 6 bits/character this would permit link valuesin the range [0,212- 1]. In the purest form of
alinked list representation of strings, each node would be of size one. Normally, this would represent
extreme wastage of space.

[]

Figure 4.37 Partitioning Available Memory Into Nodes of Size 4.

With alink field of size two characters, this would mean that only 1/3 of available memory would be
availableto store string information while the remaining 2/3 will be used only for link information. With
anode size of 8, 80% of available memory could be used for string information. WWhen using nodes of
size> 1, itispossible that a string may need a fractional number of nodes. With anode size of 4, a string
of length 13 will need only 3-1/4 nodes. Since fractional nodes cannot be allocated, 4 full nodes may be
used with the last three characters of the last node set to & (figure 4.38(a) ). An in place insertion might
require one node to be split into two asin figure 4.38(b). Deletion of a substring can be carried out by
replacing all charactersin this substring by & and freeing nodes in which the DATA field consists only
of ¥'s. In place replacement can be carried similarly. Storage management is very similar to that of
section 4.3. Storage compaction may be carried out when there are no free nodes. Strings containing
many occurrences of & could be compacted freeing severa nodes. String representation with variable
sized nodesis similar.

[]

Figure 4.38

When the node sizeis | things work out very smoothly. Insertion, deletion and concatenation are
particularly easy. The length may be determined easily by retaining a head node with this information.
Let uslook more closely at the operations of insertion and concatenation when the node size is one and
no head node is maintained. First, let us write a procedure which takes two character strings and inserts
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the second after the ith character of the first.
procedure SINSERT(S, T,1)

/linsert string T after the i-th character of S destroying the
original//

//strings S, T and creating a new string S//

1 case / | degener ate cases//

2 i <0 or i >LENGTH(S): print ('string length error'); stop
3 : T =0: return

4 S =0: SDT; return

5 end

/lat this point LENGTH(S) > 0, LENGTH(T) >0, 0 =i =
LENGTH(S) / /

6 ptr DS; ] D 1

7 while j <i do //find i-th character of S//

8 ptr DLINK(ptr); j Dj + 1 //ptr points to i-th node//
9 end

10 if i =0 then [saveDS; ptr DT; SDT] //save i + 1
character//

11 el se [saveDLINK(ptr)

12 LINK (ptr) L] T] /lattach list T to list S/

13 while LINK (ptr) # 0 do //find end of T//
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14 ptr L] LINK (ptr)
15 end
16 LINK (ptr) [] save [/ point end of T to//

/1t + 1-st character of S//
17 end SI NSERT
Examine how the algorithm works on the strings below.

[]

T isto beinserted after the fifth character of Sto give theresult THISNOW IS.' Thefifth character in S
and the last character of T are blanks. After the if statement is executed in SINSERT the following holds.

[]

Thelist Shas been split into two parts named Sand save. The node pointed at by ptr has been attached
to T. Thisvariable will now move across the list T until it points to the last node. The LINK field will be
set to point to the same node that save is pointing to, creating a single string.

Figure 4.39 Circular Representation of Sand T

The computing time of SINSERT is proportional toi + LENGTH(T). We can produce a more efficient
algorithm by altering the data structure only dightly. If we use singly linked circular lists, then Sand T
will be represented as in Figure 4.39 above. The new version of SINSERT is obtained by replacing lines
6-16 by:

ptrS;jDO
while j < i do
ptr Lluin (ptry; j LJj +1 //findi-th character of S//

end
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save D LINK (ptr) //save i + 1-st character of S//
el se LINK (ptr) L] Link (T)
LINK (T) Dsave [lattach end of T to S//

if ptr = S and i # 0 then ST

By using circular lists we avoided the need to find the end of list T. The computing time for this version
Is O(i) and isindependent of the length of T.

4.11.2 PATTERN MATCHING IN STRINGS

Now let us develop an algorithm for a more sophisticated application of strings. Given two strings Sand
PAT we regard the value of PAT as a pattern to be searched for in S If it occurs, then we want to know
the node in Swhere PAT begins. The following procedure can be used.

This agorithm is a straightforward consequence of the data representation. Unfortunately, it is not very
efficient. Suppose

S='aaa.. a; PAT ='aaa ... ab'

where LENGTH(S) = m, LENGTH(PAT)= nand mis much larger than n. Then the first n -1 letters of
PAT will match with the a'sin string Sbut the n-th letter of PAT will not. The pointer p will be moved
to the second occurrence of 'a’' in Sand the n - 1 a'sof PAT will match with Sagain. Proceeding in this
way we see therewill bem- n + 1 timesthat Sand PAT have n- 1 a'sin common. Therefore,

procedure FIND (S, PAT, i)

//find in string Sthe first occurrence of the string PAT and return
| as a pointer to the node in S where PAT begins. Oherw se return

| as zerol/

i []o

If PAT = 0 or S =0 then return
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saver; qDPAT /|l save the starting position//

while p ¥ 0 and g ¥ 0 and DATA(p) = DATA(q) do

pDLINK(p); qDLINK(q) [/ characters match,
nove to next pair//

end

If g =0 then [i Dsave; return] /[la match is found//

p D LI NK (save) /lstart at next character in S//
until p =0 /11 oop until no nore elenents in S//
end FI ND

algorithm FIND will require at least (m- n + 1) (n- 1) = O(mn) operations. This makes the cost of FIND
proportional to the product of the lengths of the two lists or quadratic rather than linear.

There are several improvements that can be made. Oneisto avoid the situation where LENGTH(PAT) is
greater than the remaining length of Sbut the algorithm is still searching for a match. Another
improvement would be to check that the first and last characters of PAT are matched in Sbefore
checking the remaining characters. Of course, these improve- will speed up processing on the average.
Procedure NFIND incorporates these improvements.

If we apply NFIND to the strings S="'aa ... a8’ and PAT ='a ... ab', then the computing time for these
inputsis O(m) where m = LENGTH(S) which isfar better than FIND which required O(mn). However,
the worst case computing time for NFIND is still O(mn).

NFIND is areasonably complex program employing linked lists and it should be understood before one
reads on. The use of pointerslikep, q, j, r isvery typical for programs using this data representation.

It would be far better if we could devise an algorithm which worksin time O(LENGTH(S) + LENGTH
(PAT)), which islinear for this problem since we must certainly look at all of PAT and potentialy al of
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procedure NFIND (S, PAT, i)

//string Sis searched for PAT and i is set to the first node in S
where PAT occurs else zero. Initially the last and first characters
of PAT are checked for in S//

i Lo

if PAT = 0 or S =0 then return

plLlgllprart []o

while LINK (g) # 0 do /1q points to | ast node of PAT//

g Ll unkeg: t L]t +1

end /It + 1 is the length of PAT//

jDrDsaveDS

forletotV\hiIej%Odo /[/find t + 1-st node of S//
i LNk ()

end

while j # 0 do [Iwhile S has nore chars to inspect//

p L1 pat; r [] save

I f DATA(q) = DATA(]) /|l check | ast characters//

then [while DATA(p) = DATA(r) and p ¥ q do

p D LINK(p); r D LI NK(r) /'l check pattern//
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end
if p =9 then [i Dsave; return]] //success//

save | LINK (save): j L) LINK(j)
end

end NFI ND

[]

Figure 4.40 Action of NFIND on S and PAT

Another desirable feature of any pattern finding algorithm isto avoid rescanning the string S If Sisso
large that it cannot conveniently be stored in memory, then rescanning adds complicationsto the
buffering operations. Such an algorithm has recently been developed by Knuth, Morris and Pratt. Using
their example suppose

PAT ='abcabcacalb

Let S=s; s,... Sy, and assume that we are currently determining whether or not thereis amatch
beginning at s. If s # a then clearly, we may proceed by comparing s; , ; and a. Similarly if § =aand s
+1 # b then we may proceed by comparing s.,1 and a. If 5 s, = ab and s, # ¢ then we have the
situation:

Ss='"-ab??2?2. .. .7
PAT = "'abcabcacalb

The ? implies we do not know what the character in Sis. Thefirst ?in Srepresentss, , , and s . » F C.

At this point we know that we may continue the search for amatch by comparing the first character in
PAT with s;,. Thereis no need to compare this character of PAT with s ;| aswe already know that s ;

1 isthe same as the second character of PAT, band so s , 1 # a. Let ustry this again assuming a match
of the first four charactersin PAT followed by anon-matchi.e. s, # b. We now have the situation:

S='"-abca2??2?. . .7

PAT = "'abcabcacalb
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We observe that the search for a match can proceed by comparing s; ; 4 and the second character in

PAT, b. Thisisthefirst place a partial match can occur by diding the pattern PAT towards the right.
Thus, by knowing the characters in the pattern and the position in the pattern where a mismatch occurs
with a character in Swe can determine where in the pattern to continue the search for a match without
moving backwardsin S. To formalize this, we define afailure function for a pattern. Definition: If P =
P1P> ... Pp IS apattern, then its failure function, f, is defined as:

[]

For the example pattern above, PAT = abcabcacab, we have
j 123456782910

PAT abcabcacahb

f 0001234012

From the definition of the failure function we arrive at the following rule for pattern matching: If a
partial match is found such that S .. -1 = PLP2.. Py and s F p; then matching may be resumed by

comparingsI and Pf(j-1)+1I1fj 1. 1fj =1, then we may continue by comparingsI +1 and Py

In order to use the above rule when the pattern is represented as a linked list as per our earlier
discussion, we include in every node representing the pattern, an additional field called NEXT. If LOC
() isthe address of the node representing pj , 1 =j = n, then we define

[]

Figure 4.41 shows the pattern PAT with the NEXT field included.
With this definition for NEXT, the pattern matching rule trandates to the following algorithm:
procedure PMATCH (S, PAT)

//determine if PAT is a substring of S//
1 i [ s //i will nove through S//

2 i L] paT //j will move through PAT//
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3 while i ¥ 0 and j # 0 do

4 i f DATA (i) = DATA (j)

5 then [//match//

6 i [ Link (i)

7 i LIunk ()]

8 else [if j = PAT then i || LINK(i)
9 el se | [] NEXT( ] ]
10 end

11 if j =0 then print ('a match')

12 el se print ('no match')

13 end PMATCH

The correctness of PMATCH follows from the definitions of the failure function and of NEXT. To
determine the computing time, we observe that the then clauses of lines 5-7 and 8-9 can be executed for
atotal of at most m=LENGTH(S) times asin each iteration i moves right on Sbut i never moves left in
the algorithm. Asaresult j can moveright on PAT at most mtimes (line 7). Since each execution of the
else clauseinline 9 movesj left on PAT, it follows that this clause can be executed at most mtimes as
otherwise ] must fall off the left end of PAT. Asaresult, the maximum number of iterations of the while
loop of lines 3-10 is m and the computing time of PMATCH is O(m). The performance of the algorithm
may be improved by starting with a better failure function (see exercise 57).

[]

Figure 4.41 Augmented Pattern PAT with NEXT Field

The preceding discussion shows that NFIND can be improved to an O(m) algorithm provided we are
either given the failure function or NEXT. We now look into the problem of determining f. Oncefis
known, it is easy to get NEXT. From exercise 56 we know that the failure function for any pattern p;

P2 P, Isgiven by:
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This directly yields the following algorithm to compute .

procedure FAIL (PAT,f)

[/ compute the failure function for PAT = pip, ... p,//
1 f(1) Lo

2 for j DZtondo [/ compute f(j)//

3 i L1t -

4 vvhilepj?ﬁpi+1andi>0olo

5 i L] f(i)

6 end

7 if pp =P+ then f(j) Lli +1
8 else f(j) L]o

9 end

10 end FAIL

In analyzing the computing time of this algorithm we note that in each iteration of the while loop of
lines 4-6 the value of i decreases (by the definition of f). The variablei isreset at the beginning of each
iteration of the for loop. However, it is either reset to O (when j = 2 or when the previous iteration went
through line 8) or it isreset to avaue 1 greater than itsterminal value on the previous iteration (i.e.
when the previous iteration went through line 7). Since only n executions of line 3 are made, the value of
| therefore has atotal increment of at most n. Hence it cannot be decremented more than n times.
Consequently the while loop of lines 4-6 isiterated at most n times over the whole algorithm and the
computing time of FAIL is O(n).
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Even if we are not given the failure function for a pattern, pattern matching can be carried out in time O
(n+ m). Thisisan improvement over NFIND.

4.12 IMPLEMENTING NODE STRUCTURES

Throughout this chapter we have dealt with nodes without really seeing how they may be set up in any
high level programming language. Since ailmost all such languages provide array variables, the easiest
way to establish n nodesisto define one dimensional arrays, each of size n, for each of thefieldsin a
node. The node structure to represent univariate polynomials (section 4.4) consisted of threefields. EXP,
COEF and LINK. Assuming integer coefficients, 200 polynomial nodes can be set up in FORTRAN
through the statement:

INTEGER EXP(200), COEF(200), LINK(200)

The nodes then have indices 1 through 200. The values of variousfieldsin any nodei, 1 =i =200 can be
determined or changed through the use of standard assignment statements. With this structure for nodes,
the following FORTRAN subroutine would perform the function of algorithm INIT of section 4.3.

SUBROUTI NE | NI T(N)
C LINK N NODES TO FORM THE | NI TI AL AVAI LABLE
C SPACE LI ST AND SET AV TO PO NT TO FI RST NODE.
C ARRAYS EXP, COEF AND LI NK AND VARI ABLE AV
C ARE | N BLANK COVMON.
| NTEGER EXP(200), COEF( 200), LI NK(200) , AV

COVMON EXP, CCEF, LI NK, AV

M=N- 1
DO10 | = 1, M

10 LINK(1) =1 + 1
LINK(N) = 0
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Av= 1
RETURN
END

Using global one dimensional arrays for each field, the function INIT can be realized in PASCAL by the
procedure:

PROCEDURE | NI T(N: | NTEGER) ;
{This procedure initializes the available space list. LINKis a gl obal

array of type integer. AV is a global variable of type integer.}

VAR |: INTEGER; {Local variable I}
BEANFORI: =1 TON- 1 DOLINK(I): =1 + 1;
LINK(N): = O;

Av. =1

END;

Usually one does not need afull memory word for each field. So space can be saved by packing several
fields into one word. If we have a 60 bit word, asin a CDC computer, choosing field sizes of 15 bitsfor
the EXPfield, 15 bitsfor the LINK field and 30 bits for the COEF field would permit the use of one
word per node. This node structure would be adequate to handle LINK and EXP valuesin the range
[0,32767] and coefficient values in excess of the range [-5 x 108, + 5 x 108]. On a 32 bit per word
machine roughly the same ranges could be obtained through the use of two words per node. One word of
each node could be used for the COEF field and half of the second word would be used for each of the
remaining two fields. In the case of 60 bit words, this packing of fields would reduce storage
requirements by 2/3, while in the 32 bit case the reduction would be by afactor of 1/3 (this, of course,
assumes that the field sizes discussed above are enough to handle the problem being solved). If we are
going to pack fields into words, then we must have away to extract and set field valuesin any node. In a
language like FORTRAN this can be done through the use of the SHIFT function together with masking
operations using the logical operations of AND, OR and NOT. The SHIFT function has two arguments,
X and N, where X is the word whose bits are to be shifted and N is the amount of the shift. If N > 0, then
the result of the shift is X shifted circularly left by N bits. The value of X isleft unchanged. If N < 0, then
the result is X shifted right with sign extension by N bits. X isleft unchanged. Figure 4.42 illustrates the
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result of aleft circular and right shift on the bits of a5 bit word. Figure 4.43 lists FORTRAN
subroutines to extract and set the three fields of a 1 word node. Figure 4.44 does this for the two fields
packed into 1 word for the case of a 32 bit word.

[ Bo bitsl | [hs bits[ ] [ 5 bitsl |

node structure using one 60 bit word per node

| NTEGER FUNCTI ON COEF( J) SUBROUTI NE SCOEF(J, 1)
C EXTRACT COEF FIELD OF J BY C SET THE COEF FIELD OF J TO |
BY
C USING A RI GHT SHI FT BY 30 BITS. C FI RST ZERO NG OUT OLD
COEF = SHI FT(J, - 30) C CONTENTS AND THEN USE AN OR
RETURN C TO PUT I N NEW VALUE. ASSUVE
| 1S
END C IN RI GHT RANGE.

J = (J.AND. 7777777777B) . OR.

SHI FT(1.AND. 7777777777B, 30)

RETURN
END
| NTEGER FUNCTI ON EXP(J) SUBROUTI NE SEXP(J, 1 )
C EXTRACT EXP FI ELD BY SHI FTI NG C SET EXP FIELD OF J TO |

C RIGHT AND ZERO NG QUT EXTRA
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BI TS J = (J.
AND. 77777777770000077777B)
EXP = SH FT(J, - 15).AND. 77777B . OR. SHI FT(1, 15)
RETURN RETURN
END END
FUNCTI ON LI NK(J) SUBROUTI NE SLI NK(J, I)
C EXTRACT LINK FIELD OF J C SET LINK FIELD OF J TO |
LINK = J. AND. 77777B J = (J.
AND. 77777777777777700000B)
RETURN LOR. |
END RETURN
END

Figure 4.43 Setting and Extracting Fields in a 60 Bit Word (EXP, LINK nonnegative
integers)

[ he bitsl ] [ he bitsl ]

| EXP LI NK |
|- |
| NTEGER FUNCTI ON EXP(J) SUBROUTI NE SEXP(J, I)
C EXTRACT EXP FIELD OF J C SET EXP FIELD OF J TO |
EXP = SH FT(J, - 16).AND.177777B J = (J.AND. 177777B). OR SHI FT

(1,16)
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RETURN RETURN
END END
(NOTE: the AND operation is needed

to mask out sign bit extension)

| NTEGER FUNCTI ON LI NK(J) SUBROUTI NE SLI NK(J, 1)
C EXTRACT LINK FIELD OF J C SET LINK FIELD OF J TO |
LINK = J. AND. 177777B J = (J. AND. 37777600000B) . OR. |

RETURN RETURN
END END

These subroutines and functions assune that negative nunbers are
stored using '1s conplenent arithnmetic. A "B follow ng a constant
means that the constant is an octal constant.

Figure 4.44 Setting and Extracting Fields in a 32 Bit Word

VAR LINK:  ARRAY [1 . . 200] OF O . . 32767;
EXP: ARRAY [1 . . 200] OF O . . 32767,
COEF: ARRAY [1 . . 200] OF - 1073741823 . . 1073741823;

Figure 4.45 PASCAL Array Declaration to Get Field Sizes

[]

Figure 4.42 Left and Right Shifts

In PASCAL, thetask of packing fieldsinto wordsis simplified or eliminated as the language definition
itself permits specifying arange of values for each variable. Thus, if the range of variable | is defined to

be [0,215 - 1], then only 15 bits are allocated to I. The PASCAL declaration, figure 4.45 for arrays EXP,
COEF and LINK would result in the same storage requirements for 200 nodes as the packing and
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unpacking routines of figure 4.44. Alternatively, one could use record variables as in figure 4.46.

TYPE POLY = PACKED RECORD COEF: -1073741823 . . 1073741823
EXP. 0 . . 32767
LINK: O . . 32767
END;
VAR NCDE: ARRAY [1 . . 200] OF POLY
usage ... NODE [subscript]. CCEF;, NCDE [subscript]. EXP; NODE

[ subscript]. LINK

Figure 4.46 Declaring NODE(200) to be a Record Variable With Fields EXP, LINK and
COEF of the Same Size as in Figure 4.45
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EXERCISES

For exercises 1-6 assume that each node has two fields: DATA and LINK. Also assume the existence of
subalgorithms GETNODE(X)and RET (X)to get and return nodes from/to the storage pool.

1. Write an algorithm LENGTH(P) to count the number of nodesin asingly linked list P, where P
pointsto the first node in the list. The last node haslink field O.

2. Let P be apointer to the first nodein asingly linked list and X an arbitrary node in this list. Write an
algorithm to delete this node from the list. If X = P, then P should be reset to point to the new first node
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inthelist.

3. Let X= (X4, X, ..., Xy) @and Y = (Y4, Yo, ..., Yip) betwo linked lists. Write an algorithm to merge the two
lists together to obtain the linked list Z = (X1, Y1, X2, Y2, -y Xy Yime Xme 10 - Xp) if m=nand Z = (x4, 3,
X0, Y2, «oes X Yo Yt 10 - Y If M > n. No additional nodes may be used.

4. Do exercise 1 for the case of circularly linked lists.
5. Do exercise 2 for the case of circularly linked lists.
6. Do exercise 3 for the case of circularly linked lists.

7. Devise arepresentation for alist where insertions and deletions can be made at either end. Such a
structureis called a deque. Write a procedure for inserting and deleting at either end.

8. Consider the hypothetical data object X2. X2 isalinear list with the restriction that while additionsto
the list may be made at either end, deletions can be made from one end only.

Design alinked list representation for X2. Write addition and deletion algorithms for X2. Specify initial
and boundary conditions for your representation.

9. Give an agorithm for asingly linked circular list which reverses the direction of the links.

10. Let P be apointer to acircularly linked list. Show how this list may be used as a queue. |.e., write
algorithms to add and delete elements. Specify the value for P when the queue is empty.

11. Itispossible to traverse asingly linked list in both directions (i.e., left to right and arestricted right
to left traversal) by reversing the links during the left to right traversal. A possible configuration for alist
P under this scheme would be:

[]

P points to the node currently being examined and L to the node on its |eft. Note that all nodes to the left
of P have their links reversed.

1) Write an algorithm to move P, n nodes to the right from a given position (L,P).
1) Write an agorithm to move P, n nodes left from any given position (L,P).

12. Consider the operation XOR (exclusive OR, also written as ) defined as below (for i,j binary):
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[]

This differs from the usual OR of logic in that

[]

The definition can be extended to the case wherei and | are binary strings (i.e., take the XOR of
corresponding bits of i and j). So, for example, if i = 10110 and j = 01100, theni XOR | =i @ | = 11010.
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Notethat a® (a@ b)=(a®a) =b
andthat (@@ b)@=a=®(b@b)=a

This gives us a space saving device for storing the right and left links of a doubly linked list. The nodes
will now have only two fields: INFO and LINK. If L, isto the left of node X and R; to itsright, then

LINK(X) = L1 R1. For the leftmost node L, = 0 and for the rightmost node R; = 0.

Let (L,R) be adoubly linked list so represented. L pointsto the left most node and R to the right most
nodein thelist.

1) Write an algorithm to traverse the doubly linked list (L,R) from left to right listing out the contents of
the INFO field of each node.

I1) Write an algorithm to traverse the list right to left listing out the contents of the INFO field of each
node.

13. Write an agorithm PREAD(X) to read in n pairs of coefficients and exponents, (¢j,&) 1=i=nof a

univariate polynomial, X, and to convert the polynomial into the circular linked list structure of section
4.4, Assumee; > €.,1, 1=i < n,andthat ¢; 0, 1 =i = n. Your algorithm should leave X pointing to the

head node. Show that this operation can be performed in time O(n).

14. Let A and B be pointers to the head nodes of two polynomials represented as in exercise 13. Write an
algorithm to compute the product polynomial C = A* B. Your algorithm should leave A and B unaltered
and create C asanew list. Show that if n and m are the number of termsin A and B respectively, then
this multiplication can be carried out in time O(nm?é) or O(mn2). If A, B are dense show that the
multiplication takes O(mn).

15. Let A be apointer to the head node of a univariate polynomial asin section 4.4. Write an algorithm,
PEVAL(AX) to evaluate the polynomial A at the point x, where x is some real number.

16. Extend the equivalence algorithm of section 4.6 to handle the case when the variables being
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equivalenced may be subscripted. The input now consists of 4-tuples (i, ioff, j, joff) wherei and j as
before represent the variables. | off and joff give the positionsini and | being equivalenced relative to the
start of i or j. For example, if i represents the array A dimensioned A(-6:10) and j, the array B
dimensioned B(1:20), the equivalence EQUIVALENCE(A(5),B(6)) will be represented by 4-tuple (i,12,
1,6). Your algorithm will begin by reading in these 4-tuples and setting them up in lists as in section 4.6.
Each node on alist will have three fields: IOFF, VAR, JOFF. Thus, for the equivalence 4-tuple above,

the nodel_| will be put into the list for i and the nodel_ onto the list for j. Now process these lists
outputting equivalence classes. With each class, output the relative position of each member of the class
and check for conflicting equivalences.

In exercises 17-21 the sparse matrices are represented as in section 4.7

17. Let A and B be two sparse matrices represeted as in section 4.7. Write an algorithm. MADD(A,B,C)
to create the matrix C = A + B. Your algorithm should |leave the matrices A and B unchanged and set up
C asanew matrix in accordance with this data representation. Show that if A and B are n x mmatrices
with r 5 and rg nonzero terms, then this addition can be carried out in O(n + m+ ra + rg) time.

18. Let A and B be two sparse matrices. Write an algorithm MMUL (A,B,C) to set up the structure for C
= A* B. Show that if Aisanx mmatrix with r, nonzero terms and if Bisamx p matrix with rg

nonzero terms, then C can be computed in time O(pr 5 + Nnrg). Can you think of away to compute Cin O
(min{pranrg})?

19. Write an algorithm to write out the terms of a sparse matrix A astriples (i,;,;). The terms are to be

output by rows and within rows by columns. Show that this operation can be performed in time O(n +
rp) if therearer, nonzero termsin A and Aisan x mmatrix.

20. Write an algorithm MTRP(A,B) to compute the matrix B = AT, the transpose of the sparse matrix A.
What is the computing time of your algorithm?

21. Design an algorithm to copy a sparse matrix. What is the computing time of your method?

22. A ssimpler and more efficient representation for sparse matrices can be obtained when oneis
restricted to the operations of addition, subtraction and multiplication. In this representation nodes have
the same fields as in the representation of section 4.7. Each nonzero term is represented by anode. These
nodes are linked together to form two circular lists. The first list, the rowlist, is made up by linking
nodes by rows and within rows by columns. Thisis done viathe RIGHT field. The second list, the
column list, is made up by linking nodes viathe DOWN field. In thislist, nodes are linked by columns
and within columns by rows. These two lists share a common head node. In addition, anode is added to
contain the dimensions of the matrix. The matrix A of figure 4.11 has the representation shown on page
206.
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Using the same assumptions as for algorithm MREAD of section 4.7 write an algorithmto read in a
matrix A and set up itsinternal representation as above. How much time does your algorithm take? How
much additional space is needed?

23. For the representation of exercise 22 write algorithmsto
(i) erase amatrix

(i) add two matrices

(i) multiply two matrices

(iv) print out a matrix

For each of the above obtain computing times. How do these times compare with the corresponding
times for the representation of section 4.77?

* solid links represent row list
dashed links represent column list
Representation of matrix A of figure 4.11 using the scheme of exercise 22.

24. Compare the sparse representations of exercise 22 and section 4.7 with respect to some other
operations. For example how much time is needed to output the entries in an arbitrary row or column?

25. (a) Write an algorithm BF(n,p) similar to algorithm FF of section 4.8 to allocate ablock of sizen
using a best fit strategy. Each block in the chain of available blocks has a SIZE field giving the number
of wordsin that block. The chain has a head node, AV (see Figure 4.16). The best fit strategy examines
each block in this chain. The allocation is made from the smallest block of size= n. P isset to the
starting address of the space allocated.

(b) Which of the algorithms BF and FF take less time?

(c) Give an example of a sequence of requests for memory and memory freeing that can be met by BF
but not by FF.

(d) Do (c) for a sequence that can be met by FF but not by BF.
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26. Which of the two algorithms ALLOCATE and FREE of section 4.8 require the condition TAG(0) =
TAG(m+ 1) = 1in order to work right? Why?

27. The boundary tag method for dynamic storage management maintained the available space list asa
doubly linked list. Isthe XOR scheme for representing doubly linked lists (see exercise 12) suitable for
this application? Why?

28. Design a storage management scheme for the case when all requests for memory are of the same
size, say k. Isit necessary to coalesce adjacent blocks that are free? Write algorithms to free and alocate
storage in this scheme.

29. Consider the dynamic storage management problem in which requests for memory are of varying
sizes asin section 4.8. Assume that blocks of storage are freed according to the LAFF discipline (Last
Allocated First Freed).

1) Design a structure to represent the free space.
I1) Write an algorithm to allocate a block of storage of size n.
I1i) Write an agorithm to free a block of storage of size n beginning at p.

30. In the case of static storage allocation all the requests are known in advance. If there are n requestsr,
rs, ...,Fn and Zr; = M where M is the total amount of memory available, then all requests can be met. So,
assume Zr;> M.

1) Which of these n requests should be satisfied if we wish to maximize the number of satisfied requests?
I1) Under the maximization criteria of (i), how small can the ratio

storage all ocat ed

iii) Would this be agood criteriato use if jobs are charged aflat rate, say $3 per job, independent of the
size of the request?

iv) The pricing policy of (iii) is unrealistic when there can be much variation in request size. A more
realistic policy isto charge say x cents per unit of request. Isthe criteriaof (i) agood one for this pricing
policy? What would be a good maximization criteriafor storage all ocation now?
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Write an algorithm to determine which requests are to be satisfied now. How much time does your
algorithm take as a function of n, the number of requests? [If your algorithm takes a polynomia amount
of time, and works correctly, take it to your instructor immediately. Y ou have made a major discovery.]

31. [Buddy System] The text examined the boundary tag method for dynamic storage management. The
next 6 exercises will examine an alternative approach in which only blocks of size a power of 2 will be
allocated. Thusif arequest for ablock of size nis made, then ablock of size Zrlogzn] isallocated. Asa
result of this, all free blocks are also of size apower of 2. If the total memory size is 2M addressed from

0to 2M - 1, then the possible sizes for free blocks are 2%, 0 = k = m. Free blocks of the same size will be
maintained in the same available space list. Thus, this system will have m + 1 available space lists. Each
list isadoubly linked circular list and has a head node AVAIL(i), 0 =i = m. Every free node hasthe
following structure:

[]

Initially al of memory is free and consists of one block beginning at 0 and of size 2M. Write an
algorithm to initialize all the available space lists.

32. [Buddy System Allocation] Using the available space list structure of exercise 31 write an algorithm
to meet arequest of size nif possible. Note that arequest of size n isto be met by allocating a block of

size 2k k = [log,n]. To do this examine the available space lists AVAIL(i), k =i = mfinding the smallest i
for which AVAIL(i) is not empty. Remove one block from thislist. Let P be the starting address of this
block. If i >k, then the block is too big and is broken into two blocks of size 21 beginning at P and P +
2i-1 respectively. The block beginning at P + 2i-1 isinserted into the corresponding available space list.
If i - 1>k, then the block isto be further split and so on. Finally, ablock of size 2K beginning at P is
allocated. A block in use has the form:

[]

1) Write an algorithm using the strategy outlined above to allocate a block of storage to meet a request
for n units of memory.

I1) For amemory of size 2M = 16 draw the binary tree representing the splitting of blocks taking placein
satisfying 16 consecutive requests for memory of size 1. (Note that the use of the TAG in the alocated
block does not really create a problem in alocations of size 1 since memory would be allocated in units
where 1 unit may be afew thousand words.) Label each node in this tree with its starting address and
present KVAL, i.e. power of 2 representing its size.

33. [Locating Buddies] Two nodes in the tree of exercise 32 are said to be buddiesif they are sibling
nodes. Prove that two nodes starting at x and y respectively are buddies iff:
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1) the KVALSfor x and y are the same: and

i) x =y @ 2kwhere @ is the exclusive OR (XOR) operation defined in exercise 12. The @ is taken pair
wise bit wise on the binary representation of y and 2.

34. [Freeing and Coalescing Blocks] When ablock with KVAL k becomes freeit isto be returned to the
available space list. Free blocks are combined into bigger free blocks iff they are buddies. This
combining follows the reverse process adopted during allocation. If a block beginning at P and of size k
becomes freg, it is to be combined with its buddy P @& 2K if the buddy is free. The new free block
beginning at L = min {P,P & 2K} and of sizek + 1 isto be combined with its buddy L & 2k+1if free and
so on. Write an algorithm to free a block beginning at P and having KVAL k combining buddies that are
free.

35. i) Does the freeing algorithm of exercise 34 always combine adjacent free blocks? If not, give a
sequence of allocations and freeings of storage showing thisto be the case.

storage requested
”) HOW Sma” can the ratlo ------------------------ be for the BUddy WStern?
storage allocated

Storage requested = Zn; where n; is actual amount requested. Give an example approaching thisratio.

Iii) How much time does the allocation algorithm take in the worst case to make an alocation if the total
memory sizeis 2m?

Iv) How much time does the freeing algorithm take in the worst case to free ablock of storage?
36. [Buddy system when memory size is not a power of 2]
1) How are the available space liststo be initialized if the total storage available is not a power of 2?

I1) What changes are to be made to the block freeing algorithm to take care of this case? Do any changes
have to be made to the allocation algorithm?

37. Write anonrecursive version of algorithm LERASE(X) of section 4.9.

38. Write anonrecursive version of algorithm EQUALS(ST) of section 4.9.
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39. Write anonrecursive version of algorithm DEPTH(S) of section 4.9.

40. Write a procedure which takes an arbitrary nonrecursive list L with no shared sublists and invertsit
and all of itssublists. For example, if L = (a, (b,c)), theninverse (L) = ((c,b),a).

41. Devise a procedure that produces the list representation of an arbitrary list given itslinear form asa
string of atoms, commas, blanks and parentheses. For example, for the input L = (a,(b,c)) your procedure
should produce the structure:

[]

42. One way to represent generalized lists is through the use of two field nodes and a symbol table
which contains all atoms and list names together with pointersto these lists. Let the two fields of each
node be named ALINK and BLINK. Then BLINK either points to the next node on the same levdl, if
thereisone, or isazero. The ALINK field either pointsto anode at alower level or, in the case of an
atom or list name, to the appropriate entry in the symbol table. For example, the list B(A,(D,E),( ),B)
would have the representation:

[]

(Thelist names D and E were aready in the table at the time the list B was input. A was not in the table
and so assumed to be an atom.)

The symbol table retains atype bit for each entry. Type = 1 if the entry isalist name and type = O for
atoms. The NIL atom may either bein the table or ALINKS can be set to O to represent the NIL atom.
Write an algorithm to read in alist in parenthesis notation and to set up its linked representation as above
with X set to point to the first node in the list. Note that no head nodes are in use. The following
subalgorithms may be used by LREAD:

1) GET(A,P) ... searches the symbol table for the name A. Pisset to O if Aisnot found in the table,
otherwise, P is set to the position of A in the table.

i) PUT(AT,P) ... enters A into the table. P isthe position at which A was entered. If Aisaready inthe

table, then the type and address fields of the old entry are changed. T = 0 to enter anatomor T > 0 to
enter alist with address T. (Note: this permits recursive definition of lists using indirect recursion).

iii) NEXT TOKEN ... gets next token in input list. (A token may be alist name, atom,'(’,")'or *,". A'Ll'is
returned if there are no more tokens.)

Iv) GETNODE(X) ... gets anode for use.

Y ou may assume that the input list is syntactically correct. In case asublist islabeled asin thelist C(D,E
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(F,G)) the structure should be set up asin the case C(D,(F,G)) and E should be entered into the symbol
table as alist with the appropriate storing address.

43. Rewrite algorithm MARK1 of section 4.10 using the conventions of section 4.9 for the tag field.

44. Rewrite algorithm MARK1 of section 4.10 for the case when each list and sublist has a head node.
Assume that the DLINK field of each head node is free and so may be used to maintain alinked stack
without using any additional space. Show that the computing time is still O(m).

45. When the DLINK field of anode is used to retain atomic information as in section 4.9, implementing
the marking strategy of MARK2 requires an additional bit in each node. In this exercise we shall explore
amarking strategy which does not require this additional bit. Its worst case computing time will

however be O(mn) where mis the number of nodes marked and n the total number of nodesin the
system. Write a marking algorithm using the node structure and conventions of section 4.9. Each node
has the fields: MARK, TAG, DLINK and RLINK. Y our marking algorithm will use variable P to point
to the node currently being examined and NEXT to point to the next node to be examined. If L isthe
address of the as yet unexplored list node with least address and P the address of the node currently
being examined then the value of NEXT will bemin {L,P + 1 }. Show that the computing time of your
algorithm is O(mn).

46. Prove that MARK2(X) marks all unmarked nodes accessible from X.

47. Write a composite marking algorithm using MARK 1, MARK?2 and afixed amount M of stack space.
Stack nodes asin MARK 1 until the stack isfull. When the stack becomes full, revert to the strategy of
MARK2. On completion of MARK?2, pick up anode from the stack and explore it using the composite
algorithm. In case the stack never overflows, the composite algorithm will be asfast as MARK 1. When
M = 0, the algorithm essentially becomes MARK?2. The computing time will in general be somewhere in
between that of MARK1 and MARK2.

48. Write a storage compaction algorithm to be used following the marking phase of garbage collection.
Assume that all nodes are of afixed size and can be addressed NODE(i), 1 =i = m. Show that this can be
donein two phases, where in the first phase a left to right scan for free nodes and aright to left scan for
nodesin useis carried out. During this phase, used nodes from the right end of memory are moved to
free positions at the left end. The relocated address of such nodes is noted in one of the fields of the old
address. At the end of this phase all nodes in use occupy a contiguous chunk of memory at the left end.
In the second phase links to relocated nodes are updated.

49. Write a compaction algorithm to be used in conjunction with the boundary tag method for storage
management. Show that this can be done in one left to right scan of memory blocks. Assume that
memory blocks are independent and do not reference each other. Further assume that all memory
references within a block are made relative to the start of the block. Assume the start of each in-use
block isin atable external to the space being allocated.
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50. Design a dynamic storage management system in which blocks are to be returned to the available
space list only during compaction. At all other times, aTAG is set to indicate the block has become free.
Assumethat initially al of memory is free and available as one block. Let memory be addressed 1
through M. For your design, write the following algorithms:

(i) ALLOCATE(n,p) ... allocates ablock of size n; p isset to its starting address. Assume that size n
includes any space needed for control fieldsin your design.

(it) FREE(n,p) ... free ablock of size n beginning at p.

(i) COMPACT ... compact memory and reinitialize the available space list. Y ou may assume that all
address references within ablock are relative to the start of the block and so no link fields within blocks
need be changed. Also, there are no interblock references.

51. Write an algorithm to make an in-place replacement of a substring of X by the string Y. Assume that
strings are represented using fixed size nodes and that each node in addition to alink field has space for
4 characters. Use & to fill up any unused space in a node.

52. Using the definition of STRING given in section 4.11, simulate the axioms as they would apply to (i)
CONCAT(ST) (ii) SUBSTR(S,2,3), (iii) INDEX(ST) where S="abcde’ and T= "cde.

53. If X=(Xq, ... Xy) and Y = (yy, ...,y,)) are strings where x; and y; are letters of the alphabet, then Xis
lessthan Yif x; =y; for 1=i=jand X; <y orif X, = y; for 1 =i = mand m<n. Write an algorithm which
takes two strings X,Y and returns either -1, 0, +1if X <Y, X=Y or X > Y respectively.

54. Let X and Y be strings represented as singly linked lists. Write a procedure which finds the first
character of X which does not occur in the string Y.

55. Show that the computing time for procedure NFIND is still O(mn). Find a string and a pattern for
which thisistrue.

56. (&) Compute the failure function for the following patterns:
(i)aaaab

(l)ababaa

(il)abaabaabb

(b) For each of the above patterns obtain the linked list representations including the field NEXT asin
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(c) let py ps ... py be apattern of length n. Let f beits failure function. Define f1(j) = f(j) and fM(j) = f(fm1
(), 1=j=nand m> 1. Show using the definition of f that:

[]

57. The definition of the failure function may be strengthened to
(a) Obtain the new failure function for the pattern PAT of the text.

(b) Show that if this definition for f is used in the definition of NEXT then algorithm PMATCH still
works correctly.

(c) Modify algorithm FAIL to compute f under this definition. Show that the computing timeis still O(n).

(d) Are there any patterns for which the observed computing time of PMATCH is more with the new
definition of f than with the old one? Are there any for which it is less? Give examples.

58. [Programming Project]

Design alinked allocation system to represent and manipulate univariate polynomials with integer
coefficients (use circular linked lists with head nodes). Each term of the polynomial will be represented
asanode. Thus, anode in this system will have three fields as bel ow:

| Coef fi ci ent |

For purposes of this project you may assume that each field requires one word and that a total of 200
nodes are available.
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The available space list is maintained as a chain with AVAIL pointing to the first node. To begin with,
write computer subprograms or procedures to perform the following basic list handling tasks:

1) INIT(N) ... initialize the storage pooal. |.e., set it up asasingly linked list linked through the field LINK
with AVAIL pointing to the first node in thislist.

i) GETNODE(X) ... provides the node X from the storage pool for use. It is easiest to provide the first
nodein AVAIL if thereis afree node.

iii) RET(X) ... return node X to the storage pool.

V) LENGTH(X) ... determines the number of nodesin the list X where X may be either acircular list or
achain.,

The external (i.e., for input and output ) representation of a univariate polynomial will be assumed to be
asequence of integers of the form: ne, ¢, e, ¢, e3¢5 ... €, C,, Where the g represents the exponents and

the ¢; the coefficients. n gives the number of termsin the polynomial. The exponents are in decreasing
order,i.e,e; e >..>e,

Write and test (using the routinesi-iv above) the following routines:

v) PREAD (X) ... read in an input polynomial and convert it to acircular list representation using a head
node. X is set to point to the head node of this polynomial.

vi) PWRITE(X) ... convert the polynomial X from itslinked list representation to external representation
and print it out.

Note: Both PREAD and PWRITE may need a buffer to hold the input while setting up the list or to
assembl e the output. Assuming that at most 10 terms may appear on an input or output line, we can use
the two arrays E(10) and C(10) for this.

Vi) PADD(X, Y, 2) ... Z= X+ Y
Vi) PSUB(X, Y, 2) ... Z=X- Y
ix) PMUL(X, Y,2) ... Z=X* Y

X) PEVAL(X, A, V) ... Aisareal constant and the polynomial X is evaluated at the point A. V is set to
this value.
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Note: Routines vi-x should leave the input polynomials unaltered after completion of their respective
tasks.

xi) PERASE(X) ... return the circular list X to the storage pool.

Use the routine LENGTH to check that all unused nodes are returned to the storage pool.
E.g., LO=LENGTH(AVAIL)

CALL PMUL(X, Y, 2)

LN = LENGTH(2) + LENGTH(AVAIL)

should result in LN= LO.

59. [Programming Project] In this project, we shall implement a complete linked list system to perform
arithmetic on sparse matrices using the representation of section 4.7. First, design a convenient node
structure assuming VALUE is an integer for the computer on which the program isto be run. Then
decide how many bits will be used for each field of the node. In case the programming language you
intend to use is FORTRAN, then write function subprograms to extract various fields that may be
packed into aword. Y ou will also need subroutine subprograms to set certain fields. If your language
permits use of structure variables, then these routines would not be needed. To begin with, write the
basic list processing routines:

a) INIT(N) ... initialize the available space list to consist of N nodes. Depending on your design each
node may be 2 or 3 words long.

b) GETNODE(X) ... provide node X for use.
c) RET(X) ... return node X to the available space list.
Test these routines to see if they work. Now write and test these routines for matrix operations:

d) MREAD(A) ... read matrix A and set up according to the representation of section 4.7. The input has
the following format:

| ine 1: nNmr n=%# or rows
m = # or col ums

r = # of nonzero terns
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line 2
triples of (row, colums, value) on each |line
liner + 1
These triples are in increasing order by rows. Within rows, the triples are in increasing order of columns.

The dataisto beread in one card at atime and converted to internal representation. The variable A is set
to point to the head node of the circular list of head nodes (asin the text).

e) MWRITE(A) ... print out the terms of A. To do this, you will have to design a suitable output format.
In any case, the output should be ordered by rows and within rows by columns.

f) MERASE(A) . . . return al nodes of the sparse matrix A to the available space list.

g) MADD(A,B,C) ... create the sparse matrix C = A + B. A and B are to be left unaltered.

h) MSUB(AB,C)..C=A-B

1) MMUL(A,B,C) ... create the sparse matrix C = A* B. A and B are to be left unaltered.

j) MTRP(A,B) ... create the sparse matrix B = AT. Aiisto be left unaltered.

60. [Programming Project] Do the project of exercise 59 using the matrix representation of exercise 22.
61. (Landweber)

This problem isto simulate an airport landing and takeoff pattern. The airport has 3 runways, runway |,
runway 2 and runway 3. There are 4 landing holding patterns, two for each of the first two runways.
Arriving planes will enter one of the holding pattern queues, where the queues are to be as close in size
as possible. When a plane enters a holding queue, it is assigned an integer ID number and an integer
giving the number of time units the plane can remain in the queue before it must land (because of low
fuel level). Thereis also aqueue for takeoffs for each of the three runways. Planes arriving in a takeoff
gueue are also assigned an integer 1D. The takeoff queues should be kept the same size.

At each time 0-3 planes may arrive at the landing queues and 0-3 planes may arrive at the takeoff
gueues. Each runway can handle one takeoff or landing at each time slot. Runway 3 isto be used for
takeoffs except when aplaneislow on fuel. At each time unit, planesin either landing queue whose air
time has reached zero must be given priority over other landings and takeoffs. If only one planeisin this
category, runway 3 isto be used. If more than one, then the other runways are also used (at each time at
most 3 planes can be serviced in this way).
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Use successive even (odd) integersfor ID's of planes arriving at takeoff (landing) queues. At each time
unit assume that arriving planes are entered into queues before takeoffs or landings occur. Try to design
your algorithm so that neither landing nor takeoff queues grow excessively. However, arriving planes
must be placed at the ends of queues. Queues cannot be reordered.

The output should clearly indicate what occurs at each time unit. Periodically print (a) the contents of
each queue; (b) the average takeoff waiting time; (c) the average landing waiting time; (d) the average
flying time remaining on landing; and (€) the number of planes landing with no fuel reserve. (b)-(c) are
for planes that have taken off or landed respectively. The output should be self explanatory and easy to
understand (and uncluttered).

The input can be on cards (terminal, file) or it can be generated by a random number generator. For each
time unit the input is of the form:

[]

Goto Chapter 5 Back to Table of Contents
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CHAPTER 5: TREES

5.1 BASIC TERMINOLOGY

In this chapter we shall study a very important data object, trees. Intuitively, atree structure means that
the data is organized so that items of information are related by branches. One very common place
where such a structure arises is in the investigation of genealogies. There are two types of genealogical
charts which are used to present such data: the pedigree and the lineal chart. Figure 5.1 gives an
example of each.

The pedigree chart shows someone's ancestors, in this case those of Dusty, whose two parents are Honey
Bear and Brandy. Brandy's parents are Nuggett and Coyote, who are Dusty's grandparents on her father's
side. The chart continues one more generation farther back to the great-grandparents. By the nature of
things, we know that the pedigree chart is normally two-way branching, though this does not allow for
inbreeding. When that occurs we no longer have atree structure unless we insist that each occurrence of
breeding is separately listed. Inbreeding may occur frequently when describing family histories of
flowers or animals.

The lineal chart of figure 5.1(b), though it has nothing to do with people, is still agenealogy. It

describes, in somewhat abbreviated form, the ancestry of the modern European languages. Thus, thisisa
chart of descendants rather than ancestors and each item can produce several others. Latin, for instance,
Is the forebear of Spanish, French, Italian and Rumanian. Proto Indo-European is a prehistoric language
presumed to have existed in the fifth millenium B.C. This tree does not have the regular structure of the
pedigree chart, but it is atree structure nevertheless .

With these two examples as motivation let us define formally what we mean by atree.

[]

Figure 5.1 Two Types of Geneological Charts

Definition: A treeisafinite set of one or more nodes such that: (i) there is a specialy designated node
called theroot; (ii) the remaining nodes are partitioned into n = 0 digoint sets Ty, ..., T,, where each of

these setsisatree. T4, ..., T, are called the subtrees of the root.

Again we have an instance of arecursive definition (compare this with the definition of a generalized list
in section 4.9). If we return to Figure 5.1 we see that the roots of the trees are Dusty and Proto Indo-
European. Tree (@) has two subtrees whose roots are Honey Bear and Brandy while tree (b) has 3
subtrees with roots Italic, Hellenic, and Germanic. The condition that T, ...,T,, be digoint sets prohibits
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subtrees from ever connecting together (no cross breeding). It follows that every item in atreeis the root
of some subtree of the whole. For instance, West Germanic is the root of a subtree of Germanic which
itself has three subtrees with roots: Low German, High German and Yiddish. Yiddish isaroot of atree
with no subtrees.

There are many terms which are often used when referring to trees. A node stands for the item of
information plus the branches to other items. Consider the treein figure 5.2. Thistree has 13 nodes, each
item of data being asingle letter for convenience. The root is A and we will normally draw trees with the
root at the top. The number of subtrees of anodeis called its degree. The degree of Ais3, of Cis 1 and
of F iszero. Nodes that have degree zero are called leaf or terminal nodes. {K,L,F,G,M,|,J} isthe set of
leaf nodes. Alternatively, the other nodes are referred to as nonterminals. The roots of the subtrees of a
node, X, are the children of X. X isthe parent of its children. Thus, the children of D are H, I, J; the
parent of D is A. Children of the same parent are said to be siblings. H, | and J are siblings. We can
extend this terminology if we need to so that we can ask for the grandparent of M which is D, etc. The
degree of a tree is the maximum degree of the nodesin the tree. The tree of figure 5.2 has degree 3. The
ancestors of anode are all the nodes along the path from the root to that node. The ancestors of M are A,
D and H.

Figure 5.2 A Sample Tree

The level of anodeisdefined by initialy letting the root be at level one. If anodeisat level |, then its
children are at level | + 1. Figure 5.2 shows the levels of al nodes in that tree. The height or depth of a
tree is defined to be the maximum level of any node in the tree.

A forestisaset of n= 0 digoint trees. The notion of aforest isvery close to that of atree becauseif we
remove the root of atree we get aforest. For example, in figure 5.2 if we remove A we get aforest with
three trees.

There are other waysto draw atree. One useful way isasalist. The tree of figure 5.2 could be written as
thelist

(A(B(E(K,L),F),C(G),D(H(M),1,J)))
The information in the root node comes first followed by alist of the subtrees of that node.

Now, how do we represent atree in memory? If we wish to use linked lists, then a node must have a
varying number of fields depending upon the number of branches.
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However it is often ssimpler to write algorithms for a data representation where the node size is fixed.
Using data and pointer fields we can represent atree using the fixed node size list structure we devised
in Chapter 4. The list representation for the tree of Figure 5.2 is on page 222. We can now make use of
many of the general procedures that we originally wrote for handling lists. Thus, the data object treeisa
special instance of the data object list and we can specialize the list representation scheme to them. In a
later section we will see that another data object which can be used to represent atree is the data object
binary tree.

[]

List representation for the tree of figure 5.2

5.2 BINARY TREES

A binary treeis an important type of tree structure which occurs very often. It is characterized by the
fact that any node can have at most two branches, i.e., there is no node with degree greater than two. For
binary trees we distinguish between the subtree on the left and on the right, whereas for trees the order
of the subtrees wasirrelevant. Also abinary tree may have zero nodes. Thusabinary treeisreally a
different object than atree.

Definition: A binary treeisafinite set of nodes which is either empty or consists of aroot and two
digoint binary trees called the left subtree and the right subtree.

Using the notation introduced in chapter one we can define the data structure binary tree as follows:

structure BTREE
decl are CREATE( ) D btree
| SMIBT( bt r ee) D bool ean

MAKEBT(btree, i tem btree) D btree
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LCH LD( bt ree) D btree
DATA( bt ree) D Item

RCHI LD( bt r ee) D btree

for all p,r € btree, d £itemlet

| SMIBT(CREATE) :: = true

| SMIBT( MAKEBT(p,d,r)) :: = false

LCH LD( MAKEBT(p,d,r)):: = p; LCH LD(CREATE):: = error
DATA( MAKEBT(p,d,r)) :: = d; DATA(CREATE) :: = error
RCH LD( MAKEBT(p,d,r)) :: =r; RCH LD(CREATE) :: = error
end

end BTREE

This set of axioms defines only a minimal set of operations on binary trees. Other operations can usually
be built in terms of these. See exercise 35 for an example.

The distinctions between a binary tree and a tree should be analyzed. First of all there is no tree having
zero nodes, but there is an empty binary tree. The two binary trees below

[]

are different. The first one has an empty right subtree while the second has an empty left subtree. If the
above are regarded as trees, then they are the same despite the fact that they are drawn dlightly
differently.

[]

Figure 5.3 Two Sample Binary Trees

Figure 5.3 shows two sample binary trees. These two trees are special kinds of binary trees. Thefirstisa
skewed tree, skewed to the left and there is a corresponding one which skews to theright. Tree 5.3bis
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called a complete binary tree. This kind of binary tree will be defined formally later on. Notice that all
terminal nodes are on adjacent levels. The terms that we introduced for trees such as: degree, level,
height, leaf, parent, and child all apply to binary treesin the natural way. Before examining data
representations for binary trees, let us first make some relevant observations regarding such trees. First,
what is the maximum number of nodesin abinary tree of depth k?

Lemmas.1

(i) The maximum number of nodes on level i of abinary treeis2-1, i = 1 and
(ii) The maximum number of nodesin a binary tree of depth kis2k- 1, k= 1.
Proof:

(i) The proof isby induction onii.

Induction Base: The root isthe only node on level i= 1. Hence the maximum number of nodes on level

i=1is2 |=2-1
Induction Hypothesis: For al j, 1 =j <i, the maximum number of nodeson level j is2 - 1.
Induction Step: The maximum number of nodeson level i - 1is2i -2, by the induction hypothesis.

Since each node in a binary tree has maximum degree 2, the maximum number of nodeson level i is2
times the maximum number on level i - 1 or 2I-1,

(i1) The maximum number of nodesin a binary tree of depth k isD (maximum number of nodes on
level i)

[]

Next, let us examine the relationship between the number of terminal nodes and the number of nodes of
degree 2 in abinary tree.

Lemma 5.2: For any nonempty binary tree, T, if n, is the number of ter minal nodes and n, the number
of nodes of degree 2, thenng=n, + 1.

Proof: Let n, be the number of nodes of degree 1 and n the total number of nodes. Since all nodesin T
are of degree =2 we have:

n:n0+n1+n2
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(5.1)

If we count the number of branchesin abinary tree, we see that every node except for the root has a
branch leading into it. If B isthe number of branches, then n =B + 1. All branches emanate either from a
node of degree one or from anode of degree 2. Thus, B = ny + 2n,. Hence, we obtain

n=1+n;+2n,

(5.2)

Subtracting (5.2) from (5.1) and rearranging terms we get

Np=ny,+1

In Figure 5.3(a) np = 1 and n, = O whilein Figure 5.3(b) np =5 and n, = 4.

Aswe continue our discussion of binary trees, we shall derive some other interesting properties.

5.3 BINARY TREE REPRESENTATIONS

A full binary tree of depth k isabinary tree of depth k having 2% - 1 nodes. By Lemma 5.1, thisisthe
maximum number of nodes such a binary tree can have. Figure 5.4 shows afull binary tree of depth 4. A
very elegant sequential representation for such binary trees results rom sequentially numbering the
nodes, starting with nodes on level 1, then those on level 2 and so on. Nodes on any level are numbered
from left to right (see figure 5.4). This numbering scheme gives us the definition of a complete binary
tree. A binary tree with n nodes and of depth k is complete iff its nodes correspond to the nodes which re
numbered one to nin the full binary tree of depth k. The nodes may now be stored in a one dimensional
array, TREE, with the node umbered i being stored in TREE(i). Lemma 5.3 enables us to easily
determine the locations of the parent, left child and right child of any node i in the binary tree.

Figure 5.4 Full Binary Tree of Depth 4 with Sequential Node Numbers

Lemma 5.3: If acomplete binary tree with n nodes (i.e., depth= [log,n] + 1) is represented sequentially
as above then for any node withindex i, 1 =i = n we have:

(i) PARENT(i) isat [i/2] if i # 1. Wheni = 1, i is the root and has no parent.
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(i) LCHILD(i) isat 2i if 2i zn. If 2i > n, then i has no left child.
(i) RCHILD(i) isat2i + 1if 2i + 1=n. If 20 + 1 > n, then i has no right child.

Proof: We prove (ii). (iii) isan immediate consequence of (ii) and the numberin g of nodes on the same
level from left to right. (i) follows from (ii) and (iii). We prove (ii) by induction oni. For i=1, clearly
the left childisat 2 unless 2 > nin which case 1 has no left child. Now assume that for all j, 1= =1,
LCHILD()) isat 2j. Then, the two nodes immediately preceding LCHILD (i + 1) in the representation
aretheright child of i and the left child of i. The left child of i isat 2i. Hence, the left child of i + 1isat
20 +2=2(i + 1) unless 2(i + 1) > ninwhich casei + 1 has no left child.

This representation can clearly be used for all binary trees though in most cases there will be alot of
unutilized space. For complete binary trees the representation is ideal as no space is wasted. For the
skewed tree of figure 5.3(a), however, less than half the array is utilized. In the worst case a skewed tree
of depth k will require 2k - 1 spaces. Of these only k will be occupied.

TREE TREE
(D 1 AT A
e I EEEER
(2 | B | B |
e I EEEES
(3 | - | 1 c|
e I REEEN
(499 1 ¢ | D |
e I EEEER
5 1 - | 1 E |
e I EEEES
& | - 1 1 F |
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Figure 5.5 Array Representation of the Binary Trees of Figure 5.3

While the above representation appears to be good for complete binary trees it is wasteful for many
other binary trees. In addition, the representation suffers from the general inadequacies of sequential
representations. Insertion or deletion of nodes from the middle of atree requires the movement of
potentially many nodes to reflect the change in level number of these nodes. These problems can be
easily overcome through the use of alinked representation. Each node will have three fields LCHILD,
DATA and RCHILD as below:

[]
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While this node structure will make it difficult to determine the parent of a node, we shall see that for
most applications, it is adequate. In case it is necessary to be able to determine the parent of random
nodes. then afourth field PARENT may be included. The representation of the binary trees of figure 5.3
using this node structureis given in figure 5.6.

[]

Figure 5.6 Linked Representation for the Binary Trees of Figure 5.3.

5.4 BINARY TREE TRAVERSAL

There are many operations that we often want to perform on trees. One notion that arises frequently is
the idea of traversing atree or visiting each node in the tree exactly once. A full traversal produces a
linear order for the information in atree. Thislinear order may be familiar and useful. When traversing a
binary tree we want to treat each node and its subtrees in the same fashion. If welet L, D, R stand for
moving left, printing the data, and moving right when at a node then there are six possible combinations
of traversal: LDR, LRD, DLR, DRL, RDL, and RLD. If we adopt the convention that we traverse left
before right then only three traversals remain: LDR, LRD and DLR. To these we assign the names
inorder, postorder and preorder because there is a natural correspondence between these traversals and
producing the infix, postfix and prefix forms of an expression. Consider the binary tree of figure 5.7.
This tree contains an arithmetic expression with binary operators: add(+), multiply(*), divide(/),
exponentiation(**) and variables A, B, C, D, and E. We will not worry for now how this binary tree was
formed, but assume that it is available. We will define three types of traversals and show the results for
thistree.

Figure 5.7 Binary Tree with Arithmetic Expression

Inorder Traversal: informally this calls for moving down the tree towards the left until you can go no
farther. Then you "visit" the node, move one node to the right and continue again. If you cannot move to
the right, go back one more node. A precise way of describing thistraversal isto write it asarecursive
procedure.

procedure | NORDER(T)

//Tis a binary tree where each node has three fields L-

CHI LD, DATA, RCHI LD/ /
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print (DATA(T))
cal | (1 NORDER( RCHI LD(T)) ]
end | NORDER

Recursion is an elegant device for describing this traversal. Let us trace how INORDER works on the
tree of figure 5.7.

Cal | of val ue

| NORDER in root Acti on

MAI' N +
1 *
2 /
3 A
4 0 print('A)
4 0 print('/")
3 *
4 B
5 0 print('B")
5 0 print('**")
4 C
5 0 print('C)
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5 0 print('*")
2 D
3 0 print('D)
3 0 print('+")
1 E
2 0 print('E)
2 0

The elements get printed in the order
AB** C*D+ E

which isthe infix form of the expression.

A second form of traversal is preorder:
procedure PRECRDER (T)

//Tis a binary tree where each node has three fields L-
CHI LD, DATA, RCHI LD/ /

if TF 0 then [print (DATA(T))
cal | PREORDER(LCHI LD(T))

cal | PREORDER(RCHI LI T))]]

end PREORDER

In words we would say "visit a node, traverse left and continue again. When you cannot continue, move
right and begin again or move back until you can move right and resume.” The nodes of figure 5.7
would be printed in preorder as
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which we recognize as the prefix form of the expression.

At this point it should be easy to guess the next traversal method which is called postorder:
procedure POSTORDER (T)

//Tis a binary tree where each node has three fields L-
CHI LD, DATA, RCHI LD/ /

if TF 0 then [call POSTORDER(LCHI LD(T))

cal | POSTORDER( RCHI LD(T))

print (DATA(T))]

end POSTORDER

The output produced by POSTORDER is

ABC**/D*E+

which isthe postfix form of our expression.

Though we have written these three algorithms using recursion, it is very easy to produce an equivalent
nonrecursive procedure. Let ustake inorder as an example. To simulate the recursion we need a stack
which will hold pairs of values (pointer, returnad) where pointer pointsto anode in the tree and
returnad to the place where the agorithm should resume after an end is encountered. We replace every
recursive call by a mechanism which places the new pair (pointer, returnad) onto the stack and goes to
the beginning; and where there is areturn or end we insert code which deletes the top pair from the stack
if possible and either ends or branches to returnad (see section 4.10 for the exact details).

Though this procedure seems highly unstructured its virtue isthat it is semiautomatically produced from
the recursive version using afixed set of rules. Our faith in the correctness of this program can be
justified

procedure | NORDERL(T)

/'l a nonrecursive version using a stack of size n//
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i Lo /linitialize the stack//

L1: if T # 0 then [i Di + 2; if i > n then call STACK FULL
STACK (i - 1) LT stac(i) L] L2

T D LCH LD(T); go to L1, [ltraverse |eft

subtree//

L2: print (DATA(T))

i L]i +2 ifi >nthen call STACK--FULL

STACK (i - 1) LI1T stack(i) []'L3

T D RCHI LD T); go to L1] //traverse right

subtree//

L3: if i # 0 then [//stack not enpty, sinmulate a return//
T[] stack (i - 1); x [ stAack (i)

i Di - 2; go to X

end | NORDER 1

if we first prove the correctness of the original version and then prove that the transformation rules result
in a correct and equivalent program. Also we can simplify this program after we make some
observations about its behavior. For every pair (T4,L3) in the stack when we come to label L3 this pair

will be removed. All such consecutive pairs will be removed until either i gets set to zero or wereach a
pair (T,,L2). Therefore, the presence of L5 pairsis useful in no way and we can delete that part of the

algorithm. This means we can eliminate the two lines of code following print (DATA(T)). We next
observe that this leaves us with only one return address, L2, so we need not place that on the stack
either. Our new version now looks like:

procedure | NORDER 2(T)
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/la sinplified, nonrecursive version using a stack of size n//
i Lo /linitialize stack//

L1: if T # 0 then [i Di + 1; if i >n then call STACK FULL
sTack (i) LT 7] LoHipm: go to L1

L2: print (DATA(T))

T[] RoHLD(T): go to L1]

if i # 0 then [//stack not enpty//

T[] stack (iy: i [L]i - 1. goto L2]

end | NORDER2

This program is considerably simpler than the previous version, but it may still offend some people
because of the seemingly undisciplined use of go to's. A SPARKS version without this statement would
be:

procedure | NORDER3(T)

//a nonrecursive, no go to version using a stack of size n//

i [ lo//initialize stack//
| oop

while T ¥ 0 do /[ / move down LCHI LD fields//
i [ li +1: if i >n then call STACK--FULL

stack (i) L) T 70 Lo

end
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if i =0 then return

T L] stack iy; i Lli -1
print (DATA(T)); T L] rRoHiLD(T)
forever

end | NORDER3

In going from the recursive version to the iterative version INORDER3 one undesirable side effect has
crept in. While in the recursive version T was | eft pointing to the root of the tree, thisis not the case
when INORDERS terminates. This may readily be corrected by introducing another variable P which is
used in place of T during the traversal.

What are the computing time and storage requirements of INORDERS ? Let n be the number of nodesin
T. If we consider the action of the above algorithm, we note that every node of the treeis placed on the

stack once. Thus, the statements STACK(i) D Tand T D STACK(i) are executed n times. Moreover, T
will equal zero once for every zero link in the tree which is exactly

2np+nNi=ng+n+n+1=n+1

So every step will be executed no more than some small constant times n or O(n). With some further
modifications we can lower the constant (see exercises). The space required for the stack is equal to the
depth of T. Thisisat most n.

Before we leave the topic of tree traversal, we shall consider one final question. Isit possible to traverse
binary trees without the use of extra space for a stack? One simple solution isto add a PARENT field to
each node. Then we can trace our way back up to any root and down again. Another solution which
requires two bits per nodeis given in section 5.6. If the allocation of this extra space is too costly then
we can use the method of algorithm MARK?2 of section 4.10. No extra storage is required since during
processing the LCHILD and RCHILD fields are used to maintain the paths back to the root. The stack of
addresses is stored in the leaf nodes. The exercises examine this algorithm more closaly.

5.5 MORE ON BINARY TREES

Using the definition of abinary tree and the recursive version of the traversals, we can easily write other
routines for working with binary trees. For instance, if we want to produce an exact copy of a given
binary tree we can modify the postorder traversal algorithm only slightly to get:
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//for a binary tree T, COPY returns a pointer to an exact copy of

T, new nodes are gotten using the usual nechanism/

ol lo
i f T#Othen[RDCCPY(LCHILD(T)) //copy left subtree//

S D COPY(RCH LD T)) [l copy right subtree//

cal | GETNCDE(Q

LcHLD(Q LIR RoHLDQ []s

//store in fields of Q/

DATA(Q || DaTA(T)]
return(Q //copy is a function//
end COPY

Another problem that is especially easy to solve using recursion is determining the equivaence of two
binary trees. Binary trees are equivalent if they have the same topology and the information in
corresponding nodesisidentical. By the same topology we mean that every branch in one tree
corresponds to a branch in the second in the same order. Algorithm EQUAL traverses the binary treesin
preorder, though any order could be used.

We have seen that binary trees arise naturally with genealogical information and further that thereisa
natural relationship between the tree traversals and various forms of expressions. There are many other

procedure EQUAL(S, T)
/1 This procedure has value false if the binary trees S and T are not

equivalent. O herwise, its value is true//
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ans D fal se

case

S=0and T=0: ans | |true
S#0and T #F O:

i f DATA(S) = DATA(T)

then [ans || EQUAL(LCHI LD(S), LCH LD(T))

it ans then ans || EQUAL(RCHI LD(S), RCHI LD(T))]
end

return (ans)

end EQUAL

instances when binary trees are important, and we will look briefly at two of them now. The first
problem has to do with processing a list of alphabetic data, say alist of variable names such as

X1, 1,3, Z, FST, X2, K.

We will grow a binary tree as we process these names in such away that for each new name we do the
following: compare it to the root and if the new name alphabetically precedes the name at the root then
move left or else move right; continue making comparisons until we fall off an end of the tree; then
create a new node and attach it to the tree in that position. The sequence of binary trees obtained for the
above datais given in figure 5.8. Given the tree in figure 5.8(g) consider the order of the identifiersif
they were printed out using an inorder traversal

FST, I, J, K, X1, X2, Z

So by growing the tree in this way we turn inorder into a sorting method. In Chapter 9 we shall prove
that this method works in general.

As a second example of the usefulness of binary trees, consider the set of formulas one can construct by
taking variables Xq,X5,X3, ... and the operatorsD (and), D (or) and D (not). These variables can only
hold one of two possible values, true or false. The set of expressions which can be formed using these
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variables and operators is defined by therules: (i) avariableis an expression, (ii) if X,y are expressions

then x D Y, X D y, — X are expressions. Parentheses can be used to alter the normal order of evaluation
which is not before and before or. This comprises the formulas in the propositional calculus (other

operations such as implication can be expressed using D D —). The expression

[]

Figure 5.8 Tree of Identifiers
x (L] = %9

isaformula (read "x; or X, and not X3"). If X, and X3 are false and x, is true, then the value of this
expression is

fal se D (true D - fal se)

= fal se D true
= true

The satisfiability problem for formulas of the propositional calculus asks if there is an assignment of
values to the variables which causes the value of the expression to be true. This problem is of great
historical interest in computer science. It was originally used by Newell, Shaw and Simon in the late
1950's to show the viability of heuristic programming (the Logic Theorist).

Again, let us assume that our formulais already in abinary tree, say
(x1D - XZ)D(—' xlmx3)D - X3

in the tree

[]

Figure 5.9 Propositional Formula in a Binary Tree

Theinorder of thistreeisx; [~ Xo [~ X1 [] X3 [ ]~ X3, the infix form of the expression. The
most obvious algorithm to determine satisfiability isto let (X1,X5,X3) take on all possible combinations of

truth and falsity and to check the formula for each combination. For n variables there are 2" possible
combinations of true=t and false=f, e.g. for n = 3 (t,t,t), (t,t,0), (t,f, v), (t,f,0), (f,t,0), (f.t.,0), (f,1,1), (f,1,0).
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The algorithm will take at least O(g2") or exponential time where g is the time to substitute values for x;,

Xo,X3 and eval uate the expression.

To evaluate an expression one method would traverse the tree in postorder, evaluating subtrees until the
entire expression is reduced to a single value. This corresponds to the postfix evaluation of an arithmetic
expression that we saw in section 3.3. Viewing this from the perspective of the tree representation, for

every node we reach, the values of its arguments (or children) have already been computed. So when we

reach the v node on level two, the values of xllj - Xpand — X1DX3Wi|| aready be available to us

and we can apply the rule for or. Notice that a node containing — has only a single right branch since
not isaunary operator.

For the purposes of this algorithm we assume each node has four fields:

|LCHILD | DATA | VAL | RCHILD |

where LCHILD, DATA, RCHILD are as before and VAL islarge enough to hold the symbols true or
false. Also we assume that DATA(T) instead of containing the variable 'x', is a pointer to atable DEF

which has one entry for each variable. Then DEF(DATA(T)) will contain the current value of the
variable. With these preparations and assuming an expression with n variables pointed at by T we can
now write afirst pass at our algorithm for satisfiability:

for all 2" possible conbinations do

generate the next conbination;

store it in DEF(1) to DEF(n);

cal | POSTORDER and eval uate T;

If VAL(T) = true then [print DEF(1) to DEF(n)
st op]

end
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print ('no satisfiable conbination')

Now let us concentrate on this modified version of postorder. Changing the original recursive version
seems the simplest thing to do.

procedure POSTORDER EVAL(T)

//a binary tree T containing a propositional fornula is evaluated with
the result stored in the VAL field of each node//

if T# 0 then[ call POSTORDER EVAL(LCHI LD(T))

cal | POSTORDER EVAL( RCHI LD(T))

case
DATA(T) = ' = : VAL(T) L] not VAL(RCH LD(T))
DATA(T) = L] va(m [ vaL(LcHiLD(T) or

VAL( RCHI LD( T))

DATA(T) = '[]: va(m) [ vaL(LoHiL(T) and
VAL( RCHI LD(T))

el se: VAL(T) | DEF(DATA(T))

end]

end POSTORDER _EVAL

5.6 THREADED BINARY TREES

If we look carefully at the linked representation of any binary tree, we notice that there are more null
links than actual pointers. Aswe saw before, there aren + 1 null links and 2n total links. A clever way to
make use of these null links has been devised by A. J. Perlisand C. Thornton. Their ideais to replace the
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null links by pointers, called threads, to other nodes in the tree. If the RCHILD(P) isnormally equal to
zero, we will replace it by a pointer to the node which would be printed after P when traversing the tree
ininorder. A null LCHILD link at node P is replaced by a pointer to the node which immediately
precedes node P in inorder. Figure 5.10 shows the binary tree of figure 5.3(b) with its new threads
drawn in as dotted lines.

Thetree T has 9 nodes and 10 null links which have been replaced by threads. If we traverse T in inorder
the nodes will bevisited intheorder HD | BE A F C G. For example node E has a predecessor thread
which points to B and a successor thread which points to A.

In the memory representation we must be able to distinguish between threads and normal pointers. This
is done by adding two extraone bit fields LBIT and RBIT.

LBIT(P) =1 if LCH LD(P) is a normal pointer
LBIT(P) =0 I f LCHILD(P) is a thread
RBIT(P) =1 if RCH LD(P) is a nornmal pointer
RBIT(P) =0 If RCHLD(P) is a thread

[]

Figure 5.10 Threaded Tree Corresponding to Figure 5.3(b)

In figure 5.10 we see that two threads have been left dangling in LCHILD(H) and RCHILD(G). In order
that we leave no loose threads we will assume a head node for all threaded binary trees. Then the
complete memory representation for the tree of figure 5.10 isshown in figure 5.11. Thetree T isthe | eft
subtree of the head node. We assume that an empty binary tree is represented by its head node as

[]

This assumption will permit easy algorithm design. Now that we have made use of the old null links we
will see that the algorithm for inorder traversal is simplified. First, we observe that for any node Xin a
binary tree, if RBIT(X) = 0, then the inorder successor of X is RCHILD(X) by definition of threads. If
RBIT(X) = 1, then the inorder successor of X is obtained by following a path of left child links from the
right child of X until anode with LBIT = 0isreached. The algorithm INSUC finds the inorder successor
of any node X in athreaded binary tree.

[]

Figure 5.11 Memory Representation of Threaded Tree
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procedure | NSUC( X)

//find the inorder succcesor of X in a threaded binary tree//

s [ ] roHi LD(X) //if RBIT(X) = 0 we are done//

if RBIT(X) = 1 then [while LBIT(S) = 1 do /1follow left//
s LcHLos) //until a thread//

end]

return (S)

end | NSUC

The interesting thing to note about procedure INSUC isthat it is now possible to find the inorder
successor of an arbitrary node in athreaded binary tree without using any information regarding inorder
predecessors and also without using an additional stack. If wewishto list ininorder all the nodesin a
threaded binary tree, then we can make repeated calls to the procedure INSUC. Since vhe treeis the | eft
subtree of the head node and because of the choice of RBIT= 1 for the head node, the inorder sequence
of nodesfor tree T is obtained by the procedure TINORDER.

procedure TI NORDER (T)

//traverse the threaded binary tree, T, in inorder//

HEAD [ ] T
| oop
T[] 1 Nsug )

If T = HEAD then return
print (DATA(T))

f orever
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end Tl NORDER

www.itdevelopteam.com
The computing timeis till O(n) for a binary tree with n nodes. The constant here will be somewhat
smaller than for procedure INORDERS.

We have seen how to use the threads of athreaded binary tree for inorder traversal. These threads also
simplify the algorithms for preorder and postorder traversal. Before closing this section let us see how to
make insertions into a threaded tree. Thiswill give us a procedure for growing threaded trees. We shall
study only the case of inserting anode T as the right child of anode S. The case of insertion of aleft
child isgiven as an exercise. If Shas an empty right subtree, then the insertion is ssmple and
diagrammed in figure 5.12(a). If the right subtree of Sis non-empty, then thisright subtree is made the
right subtree of T after insertion. When thisis done, T becomes the inorder predecessor of a node which
hasaLBIT = 0 and consequently there is a thread which hasto be updated to point to T. The node
containing this thread was previously the inorder successor of S. Figure 5.12(b) illustrates the insertion
for this case. In both cases Sisthe inorder predecessor of T. The details are spelled out in algorithm
INSERT_RIGHT.

[]

Figure 5.12 Insertion of T as a Right Child of Sin a Threaded Binary Tree
procedure I NSERT RIGHT (S, T)

/linsert node T as the right child of Sin a threaded binary tree//
ROHILD(T) Ll RoHLD(S): RBIT(T) L] RBIT(Y9)

LCH LD(T) D S; LBIT(T) D 0 [ILCH LD(T) is a thread//
RHLD(S) LT reIT(S) []1 //attach node T to S//

if RBIT (T) = 1 then [WD INSUC(T)//S had a right child//

LoH LD(W || 1

end | NSERT_RI GHT

5.7 BINARY TREE REPRESENTATION OF TREES
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We have seen several representations for and uses of binary trees. In this section we will see that every
tree can be represented as a binary tree. Thisisimportant because the methods for representing atree as
suggested in section 5.1 had some undesirable features. One form of representation used variable size
nodes. While the handling of nodes of variable size is not impossible, in section 4.8 we saw that it was
considerably more difficult than the handling of fixed size nodes (section 4.3). An aternative would be
to use fixed size nodes each node having k child fields if k is the maximum degree of any node. As
Lemma 5.4 shows, this would be very wasteful in space.

Lemmab5.4: If Tisak-ary tree (i.e., atree of degree k) with n nodes, each having afixed sizeasin
figure 5.13, then n(k- 1) + 1 of the nk link fields are zero, n =1.

Proof: Since each nonzero link pointsto a node and exactly one link points to each node other than the
root, the number of nonzero linksin an n node treeis exactly n - 1. The total number of link fieldsin a k-
ary tree with n nodes is nk. Hence, the number of null linksisnk-(n-1)=n(k-1) + 1.«

Lemma5.4 impliesthat for a 3-ary tree more than 2/3 of the link fields are zero! The proportion of zero
links approaches 1 as the degree of the tree increases. The importance of using binary trees to represent
treesisthat for binary trees only about 1/2 of the link fields are zero.

[]

Figure 5.13 Possible Node Structure for a k-ary Tree

In arriving at the binary tree representation of atree we shall implicitly make use of the fact that the
order of the children of anode is not important. Suppose we have the tree of figure 5.14.

[]

Figure 5.14 A Sample Tree

Then, we observe that the reason we needed nodes with many link fields is that the prior representation
was based on the parent-child relationship and a node can have any number of children. To obtain a
binary tree representation, we need a relationship, between the nodes, that can be characterized by at
most two quantities. One such relationship is the leftmost-child-next-right-sibling relationship. Every
node has at most one leftmost child and at most one next right sibling. In the tree of figure 5.14, the
leftmost child of B is E and the next right sibling of B is C. Strictly speaking, since the order of children
in atreeis not important, any of the children of a node could be its leftmost child and any of its siblings
could beits next right sibling. For the sake of definiteness, we choose the nodes based upon how the tree
isdrawn. The binary tree corresponding to the tree of figure 5.14 is thus obtained by connecting together
al siblings of anode and deleting all links from a node to its children except for the link to its leftmost
child. The node structure corresponds to that of
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| CHILD | SIBLING |

Using the transformation described above, we obtain the following representation for the tree of figure
5.14.

[]

This does not look like abinary tree, but if wetilt it roughly 45‘3 clockwise we get

[]

Figure 5.15 Associated Binary Tree for Tree of Figure 5.14

Let ustry this transformation on some simple trees just to make sure we've got it.

[]

One thing to notice is that the RCHILD of the root node of every resulting binary tree will be empty.
Thisis because the root of the tree we are transforming has no siblings. On the other hand, if we have a
forest then these can all be transformed into a single binary tree by first obtaining the binary tree
representation of each of the treesin the forest and then linking all the binary trees together through the
SIBLING field of the root nodes. For instance, the forest with three trees

[]

yields the binary tree

[]

We can define this transformation in aformal way as follows:

If Ty ..., Tisaforest of trees, then the binary tree corresponding to this forest, denoted by B(T ..., Ty):
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(i) isempty if n=0;

(ii) has root equal to root (T,); has left subtree equal to B(T11 T1o, ...,Tlm) where Tyg ..., T, ae the
subtrees of root(T,); and has right subtree B(T,, ..., T}).

Preorder and inorder traversals of the corresponding binary tree T of aforest F have a natural
correspondence with traversals on F. Preorder traversal of T is equivalent to visiting the nodes of F in
tree preorder which is defined by:

(i) if F isempty then return;

(ii) visit the root of thefirst tree of F;

(iii) traverse the subtrees of thefirst tree in tree preorder;

(iv) traverse the remaining trees of F in tree preorder.

Inorder traversal of T is equivalent to visiting the nodes of F in tree inorder as defined by:
(i) if F isempty then return;

(ii) traverse the subtrees of thefirst treein tree inorder;

(iii) visit the root of thefirst tree;

(iv) traverse the remaining treesin tree inorder.

The above definitions for forest traversal will be referred to as preorder and inorder. The proofs that
preorder and inorder on the corresponding binary tree are the same as preorder and inorder on the forest
are left as exercises. Thereisno natural analog for postorder traversal of the corresponding binary tree
of aforest. Nevertheless, we can define the postorder traversal of a forest as:

(i) if F isempty then return;
(i1) traverse the subtrees of the first tree of F in tree postorder;
(iii) traverse the remaining trees of F in tree postorder;

(iv) visit theroot of the first tree of F.
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Thistraversal isused later on in section 5.8.3 for describing the minimax procedure.

5.8 APPLICATIONS OF TREES

5.8.1 Set Representation

In this section we study the use of trees in the representation of sets. We shall assume that the elements
of the setsare the numbers 1, 2, 3, ..., n. These numbers might, in practice, be indicesinto a symbol table
where the actual names of the elements are stored. We shall assume that the sets being represented are
pairwise digoint; i.e, if §and §, i F j, are two sets then there is no element which isin both § and S

For example, if we have 10 elements numbered 1 through 10, they may be partitioned into three disjoint
sets S, ={1,7,8,9}; S5={2,5, 10} and S3 = {3, 4, 6}. The operations we wish to perform on these sets

are:

(i) Digoint set union ... if § and § are two disjoint sets, then their union § .+ § = {all elements x such
that xisin§ or §}. Thus, §; « §,={1,7,8,9, 2,5, 10}. Since we have assumed that al sets are
digoint, following the union of § and § we can assume that the sets § and § no longer exist
independently, i.e., they arereplaced by § -+ § in the collection of sets.

(if) Find(i) ... find the set containing element i. Thus, 4isinset S;and 9isinset ;.

The sets will be represented by trees. One possible representation for the sets S;, S, and Sz is:

[]

Note that the nodes are linked on the parent relationship, i.e. each node other than the root is linked to its
parent. The advantage of thiswill become apparent when we present the UNION and FIND algorithms.
First, to take the union of S; and S, we simply make one of the trees a subtree of the other. S, ' S,

could then have one of the following representations

[]

In order to find the union of two sets, al that has to be doneis to set the parent field of one of the roots
to the other root. This can be accomplished easily if, with each set name, we keep a pointer to the root of
the tree representing that set. If, in addition, each root has a pointer to the set name, then to determine
which set an element is currently in, we follow parent links to the root of its tree and use the pointer to
the set name. The data representation for S;, S, and S; may then take the form:

[]
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In presenting the UNION and FIND algorithms we shall ignore the actual set names and just identify
sets by the roots of the trees representing them. Thiswill simplify the discussion. The transition to set
namesis easy. If we determine that element i isin atree with root j and j has a pointer to entry k in the
set name table, then the set name is just NAME(K). If we wish to union sets § and §, then we wish to

union the trees with roots POINTER(S) and POINTER(S). Aswe shall see, in many applications the set

name isjust the element at the root. The operation of FIND(i) now becomes: determine the root of the
tree containing element i. UNION(i,j) requires two trees with rootsi and j to be joined. We shall assume
that the nodes in the trees are numbered 1 through n so that the node index corresponds to the element
index. Thus, element 6 is represented by the node with index 6. Consequently, each node needs only one
field: the PARENT field to link to its parent. Root nodes have a PARENT field of zero. Based on the
above discussion, our first attempt at arriving at UNION, FIND algorithms would result in the
algorithms U and F below.

procedure U(i,j)

//replace the disjoint sets with roots i and j, i Fj with their
uni on//

PARENT(i) L] j

end U

procedure F(i)

//find the root j of the tree containing elenent i//

p L

whi |l e PARENT(j) > 0 do [/ PARENT (j) =0 if this node is a

root//

i L] parenT(j)
end
return(j)

end F
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While these two algorithms are very easy to state, their performance characteristics are not very good.
For instance, if we start off with p elementseach in aset of itsown, i.e., § ={i}, 1 =i = p, then the

initial configuration consists of aforest with p nodesand PARENT(i) =0, 1 =i = p. Now let us process
the following sequence of UNION-FIND operations.

U(1,2), F(2), U(2,3), F(1), U(3,4)
F(1),U4)5), ...,F(1),U(n- 1,n)

This sequence results in the degenerate tree:

[]

Since the time taken for aunion is constant, all the n - 1 unions can be processed in time O(n). However,
each FIND requires following a chain of PARENT links from one to the root. The time required to
process a FIND for an element at level i of atreeis O(i). Hence, the total time needed to processthe n -

2 finds isD. It is easy to see that this example represents the worst case behavior of the UNION-FIND
algorithms. We can do much better if care istaken to avoid the creation of degenerate trees. In order to
accomplish this we shall make use of a Weighting Rule for UNION (i,j). If the number of nodesintreei
is less than the number in tree j, then make j the parent of i, otherwise make i the parent of j. Using this
rule on the sequence of set unions given before we obtain the trees on page 252. Remember that the
arguments of UNION must both be roots. The time required to process al the n findsis only O(n) since
in this case the maximum level of any nodeis 2. This, however, is not the worst case. In Lemma5.5 we

show that using the weighting rule, the maximum level for any node isL log n I+ 1.Fi r<t, let us see how
easy it isto implement the weighting rule. We need to know how many nodesthere arein any tree. To
do this easily, we maintain a count field in the root of every tree. If i isaroot node, then COUNT (i) =
number of nodesin that tree. The count can be maintained in the PARENT field as a negative number.
Thisisequivaent to using aone bit field to distinguish a count from a pointer. No confusion is created
asfor all other nodes the PARENT is positive.

[]

Trees obtained using the weighting rule

procedure UNI ON(i,|)

//union sets with roots i and j, i F j, using the weighting rule.
PARENT
(i) = - COUNT(i) and PARENT(j) = - COUNT(j)//
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x L] PARENT (i) + PARENT(j)

i f PARENT(i) > PARENT(j)

t hen [ PARENT (i) Dj /1t has fewer nodes//
PARENT (j) L] x]

el se [ PARENT () D i /1] has fewer nodes//
PARENT (i) [ x]

end UNI ON

The time required to perform a union has increased somewhat but is still bounded by a constant, i.e. itis
O(1). The FIND algorithm remains unchanged. The maximum time to perform afind is determined by
Lemmab5.5.

Lemma5.5: Let T be atree with n nodes created as a result of algorithm UNION. No node in T has
level greater |_Iogz nl+ 1.

Proof: Thelemmais clearly truefor n= 1. Assumeit istrue for al treeswith i nodes, i = n- 1. We shall
show that itisalsotruefor i = n. Let T be atree with n nodes created by the UNION algorithm.
Consider the last union operation performed, UNION(k,j). Let m be the number of nodesintreej and n -
m the number in k. Without loss of generality we may assume 1 = m= n/2. Then the maximum level of
any nodein T is either the same as that in k or isone more than that in . If the former isthe case, then

the maximum level in Tis= Llogz (n- m)J +1= Llogz nl+ 1. If the latter is the case then the maximum
level inTis= Llogz ml+2 E|_|ng n/2l+ 2. < Llogz nl+1

Example 5.1 shows that the bound of Lemma 5.5 is achievable for some sequence of unions.

Example 5.1: Consider the behavior of agorithm UNION on the following sequence of unions starting
from theinitial configuration

PARENT(i) = -COUNT(i) =-1, 1<i=n=23
UNION(L,2), UNION(3,4), UNION(5,6), UNION(7,8),

UNION(L,3), UNION(5,7), UNION(L,5).
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The following trees are obtained:

[]
[]

Asisevident, the maximum level in any tree is|.|og2 ml + 1 if the tree has m nodes.

Asaresult of Lemma 5.5, the maximum time to process afind is at most O(log n) if there are n elements
in atree. If an intermixed sequence of n- 1 UNION and m FIND operationsisto be processed, then the
worst case time becomes O(n + mlog n). Surprisingly, further improvement is possible. Thistime the
modification will be made in the FIND algorithm using the Collapsing Rule: If j isa node on the path

fromi toits root and PARENT(j) # root(i) then set PARENT(j) D root(i). The new agorithm then
becomes:

This modification roughly doubles the time for an individual find. However, it reduces the worst case
time over a sequence of finds.

Example 5.2: : Consider the tree created by algorithm UNION on the sequence of unions of example
5.1. Now process the following 8 finds:

FIND(8), FIND(8), ... FIND(8)
procedure FIND(i)
//find the root of the tree containing elenent i. Use the collapsing

rule to collapse all nodes fromi to the root j//
i L
whil e PARENT(j) > 0 do [1find root//

i L] parenT(j)

end

k []i

file:/lIC{[E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book 1/chap05.htm (31 of 54)7/3/2004 4:02:07 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 5: TREES www.itdevelopteam.com

while k #j do /'l coll apse nodes fromi to root j//
t [_] PARENT(K)

PARENT(k) |1 j

k L]t

end

return(j)

end FI ND

Using the old version F of algorithm FIND, FIND(8) requires going up 3 parent link fields for atotal of
24 moves to process al 8 finds. In algorithm FIND, the first FIND(8) requires going up 3 links and then
resetting 3 links. Each of the remaining 7 finds requires going up only 1 link field. The total cost is now
only 13 moves.

The worst case behavior of the UNION-FIND algorithms while processing a sequence of unions and
findsis stated in Lemma5.6. Before stating thislemma, let us introduce a very slowly growing function

D (m,n) which isrelated to afunctional inverse of Ackermann's function A(p,q). We have the following
definition for D (m,n):

[ dmn) =min{z=1 | A4 mnl) > log,n}

The definition of Ackermann's function used hereis:

[]

The function A(p,q) isavery rapidly growing function. One may prove the following three facts:

[]

If we assume m# 0 then (b) and (c) together with the definition of D (m,n) imply that D (m,n) = 3 for
logon < A(3,4). But from (a), A(3,4) isavery large number indeed! In Lemma 5.6 n will be the number

of UNIONSs performed. For all practical purposes we may assume log,n < A(3,4) and henceD (m,n) = 3.

Lemma5.6: [Tarjan] Let T(m,n) be the maximum time required to process any intermixed sequence of
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m<= nFINDsand n- 1 UNIONSs. Then klnD (m,n) = T(m,n) = k2er (m,n) for some positive constants
kl and k2.

Even though the function D (m,n) isavery slowly growing function, the complexity of UNION-FIND
Isnot linear in m, the number of FINDs. As far as the space requirements are concerned, the space
needed is one node for each element.

Let uslook at an application of algorithms UNION and FIND to processing the equivalence pairs of
section 4.6. The equivalence classes to be generated may be regarded as sets. These sets are digoint as
no variable can be in two equivalence classes. To begin with all n variables are in an equivalence class

of their own; thus PARENT(i) = -1, 1 =i = n. If an equivalence pair, i Dj, IS to be processed, we must
first determine the sets containing i and j. If these are different, then the two sets are to be replaced by

their union. If the two sets are the same, then nothing is to be done astherelation i Dj IS redundant; i
and j are already in the same equivalence class. To process each equivalence pair we need to perform at
most two finds and one union. Thus, if we have n variables and m = n equivalence pairs, the total

processing timeis at most O(nD (2m,m)). While for very large n thisis slightly worse than the
algorithm of section 4.6, it has the advantage of needing less space and also of being "on line."

In Chapter 6 we shall see another application of the UNION-FIND algorithms.

Example 5.3: We shall use the UNION-FIND algorithms to process the set of equivalence pairs of
scction 4.6. Initially, there are 12 trees, one for each variable. PARENT(i) = -1, 1 =i = 12.

[]

Each tree represents an equivalence class. It is possible to determine if two elements are currently in the
same equivalence class at each stage of the processing by simply making two finds.

5.8.2 Decision Trees

Another very useful application of treesisin decision making. Consider the well-known eight coins
problem. Given coins a,b,c,d,ef,g,h, we are told that one is a counterfeit and has a different weight than
the others. We want to determine which coin it is, making use of an equal arm balance. We want to do
SO0 using a minimum number of comparisons and at the same time determine whether the false coinis
heavier or lighter than the rest. The tree below represents a set of decisions by which we can get the
answer to our problem. Thisiswhy it is called adecision tree. The use of capital H or L means that the
counterfeit coin is heavier or lighter. Let us trace through one possible sequence. If a+ b+ c<d+ e+
f, then we know that the false coin is present among the six and is neither g nor h. If on our next
measurement we find that a + d < b + e, then by interchanging d and b we have no change in the
inequality. Thistellsustwo things: (i) that c or f is not the culprit, and (ii) that b or d is also not the
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culprit. If a+ dwas equal to b + e, then c or f would be the counterfeit coin. Knowing at this point that
either a or eisthe counterfeit, we compare a with agood coin, say b. If a = b, then eis heavy, otherwise
a must be light.

Figure 5.16 Eight Coins Decision Tree

By looking at this tree we see that all possibilities are covered, since there are 8 coins which can be
heavy or light and there are 16 terminal nodes. Every path requires exactly 3 comparisons. Though
viewing this problem as adecison tree is very useful it does not immediately give us an algorithm. To
solve the 8 coins problem with a program, we must write a series of tests which mirror the structure of
the tree. If wetry to do thisin SPARKS using the if-then-el se statement, we see that the program looks
like a dish of spaghetti. It isimpossible to discern the flow of the program. Actually this type of
processing is much more clearly expressed using the case statement.

We will make use of a procedure to do the last comparison.
procedure COWP(X,Y, z)

/1 x is conpared against the standard coin z//
If x >z then print (x 'heavy')

else print (y '"light")

end COWP

The procedure EIGHTCOINS appears on the next page. The program is now transparent and clearly
mirrors the decision tree of figure 5.16.

5.8.3 Game Trees

Another interesting application of treesisin the playing of games such as tic-tac-toe, chess, nim, kalah,
checkers, go, etc. As an example, let us consider the game of nim. This game is played by two players A
and B. The game itself is described by a board which initially contains a pile of n toothpicks. The
players A and B make moves alternately

procedure ElI GHTCO NS

/leight weights are input; the different one is discovered using only
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3 conparisons//
read (a, b, c, d, e, f, g, h)
case
at+b+c=d+e+f : if g>hthen call COW(qg,h,a)
el se call COWP(h, g, a)
a+b+c>d+e+f : case
a+d=Db+e cal COM(c,f,a)
a+d>Db + e call COW(a,e,b)

a+d<b+ e call COW(b,d, a)

a+b+c<d+e+f : case
a+d=Db+ e call COW(f,c,a)
a+d>Db + e call COW(d,Db,a)
a+d<b+e cal COW(e,a,b)

end

end

end El GATCO NS

with A making the first move. A legal move consists of removing either 1, 2 or 3 of the toothpicks from
the pile. However, a player cannot remove more toothpicks than there are on the pile. The player who
removes the last toothpick loses the game and the other player wins. The board configuration at any
timeis completely specified by the number of toothpicks remaining in the pile. At any time the game
status is determined by the board configuration together with the player whose turn it is to make the next
move. A terminal board cofiguration is one which represents either awin, lose or draw situation. All
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other configurations are nonterminal. In nim there is only one terminal configuration: there are no
toothpicksin the pile. This configuration isawin for player A if B made the last move, otherwiseitisa
win for B. The game of nim cannot end in adraw.

A sequence Cq, ...,C,,, of board configurations is said to be valid if:
(i) Cq isthe starting configuration of the game;
(i) G;, 0<i < m, are nonterminal configurations,

(iii) Ci, 1 isobtained from C; by alegal move made by player Aif i isodd and by player B if i iseven. It
Is assumed that there are only finitely many legal moves.

A valid sequence C,, ...,C,,, of board configurations with C,, aterminal configuration is an instance of
the game. The length of the sequence C,,C,, ...,C,ism. A finite game is one in which there are no valid

sequences of infinite length. All possible instances of afinite game may be represented by a game tree.
The tree of figure 5.17 is the game free for nim with n = 6. Each node of the tree represents a board
configuration. The root node represents the starting configuration C;. Transitions from one level to the

next are made viaamove of A or B. Transitions from an odd level represent moves made by A. All other
transitions are the result of moves made by B. Square nodes have been used in figure 5.17 to represent
board configurations when it was A's turn to move. Circular nodes have been used for other
configurations. The edges from level 1 nodesto level 2 nodes and from level 2 nodesto level 3 nodes
have been labeled with the move made by A and B respectively (for example, an edge labeled 1 means 1
toothpick isto be removed). It is easy to figure out the labels for the remaining edges of the tree.
Terminal configurations are represented by leaf nodes. Leaf nodes have been labeled by the name of the
player who wins when that configuration is reached. By the nature of the game of nim, player A can win
only at leaf nodes on odd levels while B can win only at leaf nodes on even levels. The degree of any
nodein agametreeisat most equal to the number of distinct legal moves. In nim there are at most 3
legal moves from any configuration. By definition, the number of legal moves from any configuration is
finite. The depth of a game tree is the length of alongest instance of the game. The depth of the nim tree
of figure5.17 is 7. Hence, from start to finish this game involves at most 6 moves. It is not difficult to
see how similar game trees may be constructed for other finite games such as chess, tic-tac-toe, kalah,
etc. (Strictly speaking, chessis not afinite game asit is possible to repeat board configurations in the
game. We can view chess as afinite game by disallowing this possibility. We could, for instance, define
the repetition of aboard configuration as resulting in adraw.)

Now that we have seen what a game tree is, the next question is "of what use are they?' Game trees are
useful in determining the next move a player should make. Starting at the initial configuration
represented by the root of figure 5.17 player A isfaced with the choice of making any one of three
possible moves. Which one should he make? Assuming that player A wants to win the game, he should
make the move that maximizes his chances of winning. For the simple tree of figure 5.17 thismoveis
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not too difficult to determine. We can use an evaluation function E(X) which assigns a numeric value to
the board configuration X. This function is a measure of the value or worth of configuration X to player
A. So, E(X) is high for a configuration from which A has a good chance of winning and low for a
configuration from which A has a good chance of losing. E(X) has its maximum value for configurations
that are either winning terminal configurations for A or configurations from which A is guaranteed to
win regardless of B's countermoves. E(X) hasits minimum value for configurations from which B is
guaranteed to win.

[]

Figure 5.17 Complete Game Tree for Nim with n =6

For a game such as nim with n = 6, whose game tree has very few nodes, it is sufficient to define E(X)
only for terminal configurations. We could define E(X) as:

[]

Using this evaluation function we wish to determine which of the configurations b, c, d player A should
move the game into. Clearly, the choice is the one whose value is max {V(b), V(c), V(d)} where V(X) is
the value of configuration x. For leaf nodes x, V(X) is taken to be E(x). For all other nodes x let d=1 be
the degree of x and

[]

let c4,C,, ...,Cq be the configurations represented by the children of x. Then V(X) is defined by:

[]

(5.3)

The justification for (5.3) isfairly simple. If xisasquare node, then it isat an odd level and it will be A's
turn to move from here if the game ever reaches this node. Since A wants to win he will move to that
child node with maximum value. In case x isacircular node it must be on an even level and if the game
ever reaches this node, then it will be B's turn to move. Since B is out to win the game for himself, he
will (barring mistakes) make a move that will minimize A's chances of winning. In this case the next
configuration will beD {V(c)}. Equation (5.3) defines the minimax procedure to determine the value of
aconfiguration x. Thisisillustrated on the hypothetical game of figure 5.18. P4 represents an arbitrary
board configuration from which A has to make a move. The values of the leaf nodes are obtained by
evaluating the function E(x). The value of P4, is obtained by starting at the nodes on level 4 and

computing their values using eg. (5.3). Since level 4 isalevel with circular nodes al unknown values on
thislevel may be obtained by taking the minimum of the children values. Next, values on levels 3, 2 and
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1 may be computed in that order. The resulting value for P14 is 3. This means that starting from P4, the

best A can hope to do isreach a configuration of value 3. Even though some nodes have value greater
than 3, these nodes will not be reached, as B's countermoves will prevent the game from reaching any
such configuration (assuming B's countermoves are optimal for B with respect to A's evaluation
function). For example, if A made a moveto P,;, hoping to win the game at P3;, A would indeed be

surprised by B's countermove to P53, resulting in alossto A. Given A's evaluation function and the game
tree of figure 5.18, the best move for A to make isto configuration P,,. Having made this move, the
game may still not reach configuration Ps, as B would, in general, be using a different evaluation

function, which might give different values to various board configurations. In any case, the minimax
procedure can be used to determine the best move a player can make given his evaluation function.
Using the minimax procedure on the game tree for nim (figure 5.17) we see that the value of the root
nodeis V(a) = 1. Since E(X) for this game was defined to be 1 iff A was guaranteed to win, this means
that if A makes the optimal move from node a then no matter what B's countermoves A will win. The
optimal move isto node b. One may readily verify that from b A can win the game independent of B's
countermove!

[]

Figure 5.18 Portion of Game Tree for a Hypothetical Game. The value of terminal nodes
Is obtained from the evaluation function E(x) for player A.

For games such as nim with n = 6, the game trees are sufficiently small that it is possible to generate the
whole tree. Thus, it isarelatively simple matter to determine whether or not the game has awinning
strategy. Moreover, for such gamesit is possible to make a decision on the next move by looking ahead
al the way to terminal configurations. Games of this type are not very interesting since assuming no
errors are made by either player, the outcome of the game is predetermined and both players should use
similar evaluation functions, i.e., Eo(X) = 1 for X awinning configuration and Ex(X) = - 1 for X alosing

configuration for A; Eg(X) = - Ea(X).

Of greater interest are games such as chess where the game tree istoo large to be generated in its
entirety. It is estimated that the game tree for chess has >10100 nodes. Even using a computer which is
capable of generating 1011 nodes a second, the complete generation of the game tree for chess would
require more than 1080 years. In games with large game trees the decision as to which move to make
next can be made only by looking at the game tree for the next few levels. The evaluation function E(X)
Is used to get the values of the leaf nodes of the subtree generated and then eg. (5.3) can be used to get
the values of the remaining nodes and hence to determine the next move. In a game such as chess it may
be possible to generate only the next few levels (say 6) of the tree. In such situations both the quality of
the resulting game and its outcome will depend upon the quality of the evaluating functions being used
by the two players as well as of the algorithm being used to determine V(X) by minimax for the current
game configuration. The efficiency of this algorithm will limit the number of nodes of the search tree
that can be generated and so will have an effect on the quality of the game.
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Let us assume that player A isacomputer and attempt to write an algorithm that A can use to compute V
(X). It isclear that the procedure to compute V(X) can also be used to determine the next move that A
should make. A fairly simple recursive procedure to evaluate V(X) using minimax can be obtained if we
recast the definition of minimax into the following form:

[]
(5.4)
where e(X) = E(X) if X isaposition from which A isto move and &(X) = - E(X) otherwise.

Starting at a configuration X from which A isto move, one can easily prove that eg. (5.4) computes V'(X)
= V(X) asgiven by eg. (5.3). Infact, values for all nodes on levels from which A isto move are the same
as given by eqg. (5.3) while values on other levels are the negative of those given by eqg. (5.3).

The recursive procedure to evaluate V'(X) based on eg. (5.4) isthen VE(X,|). This algorithm evaluates
V'(X) by generating only | levels of the game tree beginning with X as root. One may readily verify that
this algorithm traverses the desired subtree of the game tree in postorder.

procedure VE(X |)

//compute V' (X) by | ooking at nost | noves ahead. e(X) is the
eval uation function for player A For convenience, it is assuned
that starting fromany board configuration X the | egal noves of

the ganme permt a transition only to the configurations C,GC,, ...,Cy

If Xis not a termnal configuration.//

if Xis termnal or | =0 then return e(X)

ans || - VE(C, I - 1 //traverse the first subtree//
for i DZtoddo /ltraverse the remai ning subtrees//
ans || max {ans, - VE(C, | - 1)}
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end
return (ans)
end VE

An Initial call to algorithm VE with X = P, and | = 4 for the hypothetical game of figure 5.18 would
result in the generation of the complete game tree. The values of various configurations would be
determined in the order: P3q, P3o, Po1, Psj, Pso, Psa, Pa1, Psa, Pss, Psg, Pao, P33, -..,P37,P2a, P11. IS
possible to introduce, with relative ease, some heuristics into algorithm VE that will in general result in
the generation of only a portion of the possible configurations while still computing V'(X) accurately.

Consider the gametree of figure 5.18. After V(P4,) has been computed, it is known that V(Ps3) isat
least V(P41)= 3. Next, when V(Psgg) is determined to be 2, then we know that V(P,,) isat most 2. Since
P33 isamax position, V(P,4,) cannot affect V(P33). Regardless of the values of the remaining children of
P4, the value of P33 isnot determined by V(Py4,) as V(P,4,) cannot be more than V(P,4,). This
observation may be stated more formally as the following rule: The alpha value of amax position is
defined to be the minimum possible value for that position. If the value of a min position is determined
to be less than or equal to the alpha value of its parent, then we may stop generation of the remaining

children of thismin position. Termination of node generation under thisrule is known as alpha cutoff.
Once V(P44) in figure 5.18 is determined, the alpha value of P33 becomes 3. V(Ps5) = aphavalue of P33

implies that Pgg need not be generated.

A corresponding rule may be defined for min positions. The beta value of a min position isthe
maximum possible value for that position. If the value of a max position is determined to be greater than
or equal to the beta value of its parent node, then we may stop generation of the remaining children of
this max position. Termination of node generation under thisruleis called beta cutoff. In figure 5.18,
once V(P3s) is determined, the beta value of P,z is known to be at most -*. Generation of Pg7, Psg, Psg

gives V(P43) = 0. Thus, V(P43) is greater than or equal to the beta value of P,3 and we may terminate the
generation of the remaining children of Pg. The two rules stated above may be combined together to get

what is known as al pha-beta pruning. When alpha-beta pruning is used on figure 5.18, the subtree with
root P is not generated at all! This is because when the value of P,3 is being determined the alpha

value of Py is3. V(P35) islessthan the alpha value of P14 and so an alpha cutoff takes place. It should

be emphasized that the alpha or beta value of a node is a dynamic quantity. Its value at any time during
the game tree generation depends upon which nodes have so far been generated and eval uated.

In actually introducing al pha-beta pruning into algorithm VE it is necessary to restate thisrule in terms
of the values defined by eq. (5.4). Under eg. (5.4) all positions are max positions since the values of the
min positions of eq. (5.3) have been multiplied by -1. The alpha-beta pruning rule now reduces to the
following rule: let the B value of a position be the minimum value that that position can have.
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For any position X, let B be the B - value of its parent and let D = -B. Then, if the value of X is
determined the greater than or equal to D, we may terminate generation of the remaining children of X.
Incorporating this rule into algorithm VE isfairly straightforward and resultsin algorithm VEB. This
algorithm has the additional parameter D which is the negative of the B value of the parent of X.

procedure VEB(X, |, D)

//determne V (X) as in eq. (5.4) using the B-rule and | ooking
only I noves ahead. Remai ni ng assunptions and notation are
the sane as for algorithmVE.//

if Xis terminal or | = 0 then return e(x)

ans D - =, //current | ower bound on V (x)//
for i L]1 tod do

ans D max {ans, - VEB(G,Il-1,-ans)}

if ans = D then return (ans) [luse B-rulel/
end

return (ans)

end VEB

If Yisaposition from which A isto move, then the initia call VEB(Y,l,*) correctly computes V' (Y)
with an | move look ahead. Further pruning of the game tree may be achieved by realizing that the B -
value of a node X places a lower bound on the value grandchildren of X must have in order to affect X's
value. Consider the subtree of figure 5.19(a). If V' (GC(X)) = B then V' (C(X)) = -B. Following the
evaluation of C(X), the B-value of X ismax{B,-V' (C(X))} = B asV'(C(X)) = -B. Hence unless V' (GC
(X)) > B, it cannot affect V' (X) and so B isa lower bound on the value GC(X) should have.
Incorporating this lowerbound into algorithm VEB yields algorithm AB. The additional parameter LB is
a lowerbound on the value X should have.

procedure AB(X |, LB, D)
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//same as algorithm VEB. LB is a | owerbound on V' (X)//

if Xis termnal or | = 0 then return e(X

ans D LB [/ current |owerbound on V' (X)//
for i [ 11to d do

ans Dnax{ans,-AB(q,I-1,-D,-ans)}

if ans = D then return (ans)

end

return (ans)

end AB.

One may easily verify that theinitial call AB(Y,l, -*,*) gives the same result as the call VE(Y,I).

Figure 5.19(b) shows a hypothetical game tree in which the use of algorithm AB results in greater
pruning than achieved by algorithm VEB. Let usfirst trace the action of VEB on the tree of figure 5.19
(b). We assume theinitial call to be VEB(P4,l,™) where | isthe depth of the tree. After examining the

|eft subtree of P4, the B value of P is set to 10 and nodes P3, P,4, P5 and Pg are generated. Following
this, V' (Pg) is determined to be 9 and then the B-value of P5 becomes -9. Using this, we continue to
evaluate the node P-. In the case of AB however, since the B-value of P; is 10, the lowerbound for P, is
10 and so the effective B-value of P, becomes 10. As aresult the node P is not generated since no
matter what its value V' (Ps) = -9 and thiswill not enable V' (P,) to reach its lower bound.

[]

Figure 5.19 Game trees showing lower bounding

5.9 COUNTING BINARY TREES

Asaconclusion to our chapter on trees, we determine the number of distinct binary trees having n
nodes. We know that if n=0 or n = 1 there is one such tree. If n = 2, then there are two distinct binary
trees
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[]

and if n= 3, therearefive

[]

How many distinct binary trees are there with n nodes?

www.itdevelopteam.com

Before solving this problem let us look at some other counting problems that are equivalent to this one.

In section 5.4 we introduced the notion of preorder, inorder and postorder traversals. Suppose we are
given the preorder sequence

ABCDEFGHI
and the inorder sequence
BCAEDGHFI

of the same binary tree. Does such apair of sequences uniquely define a binary tree? Asked another
way, can the above pair of sequences come from more than one binary tree. We can construct the binary
tree which has these sequences by noticing that the first letter in preorder, A, must be the root and by the
definition of inorder all nodes preceding A must occur in the left subtree and the remaining nodes occur
in the right subtree.

Thisgivesus

[]

asour first approximation to the correct tree. Moving right in the preorder sequence we find B as the
next root and from the inorder we see B has an empty left subtree and C isin itsright subtree. This gives

[]

as the next approximation. Continuing in this way we arrive at the binary tree

[]

By formalizing this argument, see the exercises, we can verify that every binary tree has a unique pair of
preorder-inorder scquences.
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L et the nodes of an n node binary tree be numbered 1 to n. The inorder permutation defined by such a
binary tree isthe order in which its nodes are visited during an inorder traversal of the tree. A preorder
permutation is similarly defined.

As an example, consider the binary tree above with the following numbering of nodes:

[]

Its preorder permutation is 1,2, ...,9 and its inorder permutationis 2,3,1,5,4,7,8,6,9.
If the nodes of abinary tree are numbered such that its preorder permutation is 1,2, ...,n, then from our
earlier discussion it follows that distinct binary trees define distinct inorder permutations. The number of

distinct binary treesis thus equal to the number of distinct inorder permutations obtainable from binary
trees having the preorder permutation 1,2, ...,n.

Using this concept of an inorder permutation, it is possible to show that the number of distinct
permutations obtainable by passing the numbers 1 to n through a stack and deleting in all possible ways
Is equal to the number of distinct binary trees with n nodes (see the exercises). If we start with the
numbers 1,2,3 then the possible permutations obtainable by a stack are

1,2,3;1,3,2; 2,1,3; 3,2,1; 3, 2, 1;

It is not possible to obtain 3,1,2. Each of these five permutations corresponds to one of the five distinct
binary trees with 3 nodes

[]

Another problem which surprisingly has connection with the previous two is the following: we have a
product of n matrices

My * Mo* Mg* ... * M,

that we wish to compute. We can perform these operations in any order because multiplication of
matrices is associative. We ask the question: how many different ways can we perform these
multiplications? For example, if n = 3, there are two possibilities

(M1 * Mp) * Mg and My * (Mp* My)
and if n =4, there are five ways
(M1 * Mp) * Mg) * My, (M1 * (My* Mg)) * My,
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My * (M2« M3) * My)

(M1 * (Ma* (M3™* My))), (M1 * M) * (M3 * My))

Let b, be the number of different ways to compute the product of n matrices. Thenb, =1, b3 =2, b, =5.
Let M;; i <], bethe product M; * M;,1 * ... * M; The product we wish to compute is My My may be
computed by computing any one of the products Mli * Mi+1,n, 1 =1 <n. The number of waysto obtain
My, and Mit,, is bj and by,.; respectively. Therefore, letting by = 1 we have:

[]

If we can determine an expression for by, only in terms of n, then we have a solution to our problem.
Now instead let b, be the number of distinct binary trees with n nodes. Again an expression for b, in
terms of niswhat we want. Then we see that b,, is the sum of all possible binary trees formed in the
following way, aroot and two subtrees with b; and by,.;_; nodes,

[]

for0=i=n-1. Thissaysthat
(5.5)
This formula and the previous one are essentially the same.

So, the number of binary trees with n nodes, the number of permutations of 1 to n obtainable with a
stack, and the number of ways to multiply n + 1 factors are all equal to the same number!

To obtain this number we must solve the recurrence of eg. (5.5). To begin we let

[]

(5.6)

which is the generating function for the number of binary trees. Next, observe that by the recurrence
relation we get the identity
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X B2(x) = B(x) - 1
Using the formula to solve quadratics and the fact (eg. (5.5)) that B(0) = by = 1 we get:

[]

It isnot clear at this point that we have made any progress but by using the binomial theorem to expand
(1 - 4x)V2 we get

[]
(5.7)
Comparing egs. (5.6) and (5.7)we see that b, which is the coefficient of x"in B(X) is:

[]

Some simplification yields the more compact form

[]

which is approximately

b= O(4"/n3/2)
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1. For the binary tree below list the termina nodes, the nonterminal nodes and the level of each node.

[]

2. Draw the internal memory representation of the above binary tree using (a) sequential, (b) linked, and
(c) threaded linked representations.

3. Write a procedure which reads in atree represented as alist asin section 5.1 and createsits internal
representation using nodes with 3 fields, TAG, DATA, LINK.

4. Write a procedure which reverses the above process and takes a pointer to atree and prints out its list
representation.

5. Write a nonrecursive version of procedure PREORDER.
6. Write anonrecursive version of procedure POSTORDER without using go to's.

7. Rework INORDER3 so it isas fast as possible. (Hint: minimize the stacking and the testing within the
loop.)

8. Write a nonrecursive version of procedure POSTORDER using only afixed amount of additional
space. (See exercise 36 for details)

9. Do exercise 8 for the case of PREORDER.

10. Given atree of names constructed as described in section 5.5 prove that an inorder traversal will
always print the names in alphabetical order.

Exercises 11-13 assume a linked representation for a binary tree.

11. Write an algorithm to list the DATA fields of the nodes of abinary tree T by level. Within levels
nodes are to be listed left to right.

12. Give an algorithm to count the number of leaf nodesin abinary tree T. What is its computing time?

13. Write an agorithm SWAPTREE(T) which takes a binary tree and swaps the left and right children of
every node. For example, if T isthe binary tree
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14. Devise an external representation for formulas in the propositional calculus. Write a procedure
which reads such a formula and creates a binary tree representation of it. How efficient is your
procedure?
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15. Procedure POSTORDER-EV AL must be able to distinguish between the wmbolslj D = anda
pointer in the DATA field of anode. How should this be done?

16. What is the computing time for POSTORDER-EVAL? First determine the logical parameters.

17. Write an agorithm which inserts anew node T as the left child of node Sin athreaded binary tree.
The left pointer of Sbecomes the left pointer of T.

18. Write a procedure which traverses a threaded binary tree in postorder. What is the time and space
requirements of your method?

19. Define the inverse transformation of the one which creates the associated binary tree from a forest.
Are these transformations unique?

20. Prove that preorder traversal on trees and preorder traversal on the associated binary tree gives the
same result.

21. Prove that inorder traversal for trees and inorder traversal on the associated binary tree give the same
result.

22. Using the result of example 5. 3, draw the trees after processing the instruction UNION(12,10).
23. Consider the hypothetical game tree:

[]

(a) Using the minimax technique (eg. (5.3)) obtain the value of the root node..

(b) What move should player A make?

(c) List the nodes of this game tree in the order in which their value is computed by algorithm VE.
(d) Using eg. (5.4) compute V' (X) for every node X in the tree.

(e) Which nodes of this tree are not evaluated during the computation of the value of the root node using

file:///C|/E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book 1/chap05.htm (49 of 54)7/3/2004 4:02:07 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 5: TREES www.itdevelopteam.com

algorithm AB with X =root, I= =, LB=-""and D = =?

24. Show that V'(X) computed by eqg. (5.4) isthe same as V(X) computed by eqg. (5.3) for all nodes on
levels from which A isto move. For all other nodes show that V(X) computed by eg. (5.3) isthe negative
of V'(X) computed by eqg. (5.4).

25. Show that algorithm AB when initially called with LB =-= and D =™ yields the same results as VE
doesfor the same X and |.

26. Prove that every binary treeis uniquely defined by its preorder and inorder sequences .

27. Do the inorder and postorder sequences of a binary tree uniquely define the binary tree? Prove your
answer.

28. Answer exercise 27 for preorder and postorder.
29. Write an algorithm to construct the binary tree with a given preorder and inorder sequence.
30. Do exercise 29 for inorder and postorder.

31. Prove that the number of distinct permutations of 1,2, ...,n obtainable by a stack is equal to the
number of distinct binary trees with n nodes. (Hint: Use the concept of an inorder permutation of atree
with preorder permutation 1,2, ...,n).

32. Using Stirling's formula derive the more accurate value of the number of binary trees with n nodes,

[]

33. Consider threading a binary tree using preorder threads rather than inorder threads asin the text. Is it
possible to traverse a binary tree in preorder without a stack using these threads?

34. Write an algorithm for traversing an inorder threaded binalry tree in preorder.

35. The operation PREORD(btree) D gueue returns a queue whose elements are the data items of btree

in preorder. Using the operation APPENDQ(queue, queue) D gueue which concatenates two queues,
PREORD can be axiomatized by

PREORD( CREATE) :: = MIQ

PREORD( MAKBT(p, d, r))
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Devise similar axioms for INORDER AND POSTORDER.

36. The agorithm on page 281 performs an inorder traversal without using threads, a stack or a
PARENT field. Verify that the algorithm is correct by running it on a variety of binary trees which cause
every statement to execute at least once. Before attempting to study this algorithm be sure you
understand MARK 2 of section 4.10.

37. Extend the equivalence algorithm discussed in section 5.8.1 so it handles the equivalencing of arrays
(see section 4.6). Analyze the computing time of your solution.

38. [Wilczynski] Following the conventions of L1SP assume nodes with two fields D If A= ((a(bc)))
then HEAD(A) = (a(bc)), TAIL(A) = NIL, HEAD(HEAD(A)) = a, TAIL(HEAD(A)) = ((bc)). CONS(A,
B) getsanew node T, storesAinitsHEAD, Binits TAIL and returns T. B must alwaysbe alist. If L =
a, M = (bc) then CONS(L,M) = (abc), CONS(M,M) = ((bc)bc). Three other useful functions are: ATOM
(X) whichistrueif Xisan atom elsefalse, NULL(X) whichistrueif XisNIL elsefase, EQUAL(X,Y)
which istrueif X and Y are the same atoms or equivalent lists else false.

a) Give a sequence of HEAD, TAIL operations for extracting a from the lists: ((cat)), ((a)), (mart),
(((cb))a).

b) Write recursive procedures for: COPY, REVERSE, APPEND.

¢) Implement this"LISP" subsystem. Store atoms in an array, write procedures MAKELIST and
LISTPRINT for input and output of lists.

| i ne procedure | NORDER4(T)
/linorder traversal of binary tree T using a fixed anount of

addi tional storage//

1 iIf T =0 then return /|l enpty binary tree//

2 topDIaSt_right DO; quDT I[linitializell
3 | oop

4 | oop /I mrove down as far as possible//
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5 case
6 :LCH LD(p) = 0 and RCH LD(p) = O:

//can't nove down//

7 print (DATA(p)); exit

8 : LCH LD(p) = O: /I move to RCH LD(p)//

9 print (DATA(p)) [lvisit pll/
10 r L] roriLD(p); ReHiLD(p) L g;
q [Lpip v

11 el se: /[l move to LCH LD(p)//

12 r L] LeHnp); Loniop) Ll g q L] p:
p Llr

13 end

14 forever

/l'pis a leaf node, nove upwards to a node whose ri ght

subtree hasn't yet been exam ned//

15 av [] p /'l eaf node to be used in stack//

16 | oop /I move up fromp//

17 case

18 'p = T: return //can't nove up fromroot//

19 :LCHILD(q) = O: /1q is linked via RCH LD/ /

file:/lIC{[E%20Drive%20Data/My%20Books/Algorithm/DrD...ooks_Algorithms_Collection2ed/books/book1/chap05.htm (52 of 54)7/3/2004 4:02:07 PM


www.itdevelopteam.com

Fundamentals: CHAPTER 5: TREES

20

21

22
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r L] reiLD(g); romiio(a) Llp; p g o L

RCHILD(q) = O: /1qis linked via LCH LD/ /

rDLCHILD(q); LCHI LD( q) Dp; qu; qu;

pri nt (DATA(p))

23 el se: //check if pis RCHLD of qg//

24 if g = last_right then [//p is RCH LD of q//

25 r Dtop; | ast--ri ght D LCHI LD r) / | updat e
| ast--right//

26 top D RCHI LD(r) ; / I unst ack//

27 LCH LD(r) DRCHI LD(r) D 0 Il reset |eaf
node |inks//

28 r L] roriLo(q); romio(a) Ll p; p g g L

29 else [//p is LCH LD of q//

30 print (DATA(Q)) [lvisit g/l

31 LCHI L av) D | ast _right; RCH LD(av) D t op;

topDav

32 | ast _ri ght Dq

33 r L] LcHLD(q): LcHLD(q) [ p

/lrestore link to p//
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34 rl[:]RCHHJXq); RCHI LD( q) [ p []rl; exi t

/I move right//]

35 end
36 forever
37 forever

38 end | NORDER4

Goto Chapter 6 Back to Table of Contents
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« m )
CHAPTER 6: GRAPHS

6.1 TERMINOLOGY AND REPRESENTATIONS

6.1.1 Introduction

Thefirst recorded evidence of the use of graphs dates back to 1736 when Euler used them to solve the
now classical Koenigsberg bridge problem. In the town of Koenigsberg (in Eastern Prussia) the river
Pregal flows around the island Kneiphof and then divides into two. There are, therefore, four land areas
bordering thisriver (figure 6.1). These land areas are interconnected by means of seven bridges a-g. The
land areas themselves are labeled A-D. The Koenigsberg bridge problem is to determine whether
starting at some land areait is possible to walk across all the bridges exactly once returning to the
starting land area. One possible walk would be to start from land area B; walk across bridge a to island
A; take bridge eto area D; bridge g to C; bridge d to A; bridge b to B and bridge f to D. Thiswalk does
not go across all bridges exactly once, nor does it return to the starting land area B. Euler answered the
Koenigsberg bridge problem in the negative: The people of Koenigsberg will not be able to walk across
each bridge exactly once and return to the starting point. He solved the problem by representing the land
areas as vertices and the bridges as edges in a graph (actually a multigraph) asin figure 6.1(b). His
solution is elegant and appliesto al graphs. Defining the degree of a vertex to be the number of edges
incident to it, Euler showed that there isawalk starting at any vertex, going through each edge exactly
once and terminating at the start vertex iff the degree of each, vertex is even. A walk which doesthisis
called Eulerian. There is no Eulerian walk for the Koenigsberg bridge problem as all four vertices are of
odd degree.

Since thisfirst application of graphs, they have been used in awide variety of applications. Some of
these applications are: analysis of electrical circuits, finding shortest routes, analysis of project planning,
identification of chemical compounds, statistical mechanics, genetics, cybernetics, linguistics, social
sciences, etc. Indeed, it might well be said that of all mathematical structures, graphs are the most widely
used.

[]

Figure 6.1 Section of the river Pregal in Koenigsberg and Euler's graph.

6.1.2 Definitions and Terminology

A graph, G, consists of two setsV and E. V is afinite non-empty set of vertices. E isaset of pairs of
vertices, these pairs are called edges. V(G) and E(G) will represent the sets of vertices and edges of
graph G. We will also write G = (V,E) to represent a graph. In an undirected graph the pair of vertices
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representing any edge is unordered . Thus, the pairs (vq, Vo) and (v», v4) represent the same edge. In a
directed graph each edge is represented by adirected pair (vq, V). v; isthe tail and v, the head of the
edge. Therefore <v,, v;>and <v_, v.,> represent two different edges. Figure 6.2 shows three graphs G,

1" 2
GZ and G3.

[]

Figure 6.2 Three sample graphs.

The graphs G, and G, are undirected. G is adirected graph.
V (Gy ={1,2,34}; E(Gy ={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}

V (G,) ={123456,7}; E(G,) ={(12),(13),(24),(2.5),(3,6),(3.7)}
V (Ga) ={1.2,3}; E(Gq) ={<1,2>, <2,1>, <2,3>}.

Note that the edges of a directed graph are drawn with an arrow from the tail to the head. The graph G,
is also atree while the graphs G, and Gz are not. Trees can be defined as a special case of graphs, but
we need more terminology for that. If (v4,v5) or <v4,v,> is an edge in E(G), then we require 2 + Vy- In

addition, since E(G) isaset, agraph may not have multiple occurrences of the same edge. When this
restriction is removed from a graph, the resulting data object is referred to as a multigraph. The data
object of figure 6.3 is a multigraph which is not a graph.

The number of distinct unordered pairs (v;,v)) with v, F v, inagraph with nverticesisn(n - 1)/2. Thisis
the maximum number of edges in any n vertex undirected graph. An n vertex undirected graph with
exactly n(n - 1)/2 edges is said to be complete. G, is the complete graph on 4 vertices while G, and G3

are not complete graphs. In the case of a directed graph on n vertices the maximum number of edgesisn
(n-1).

If (v1,v,) isan edgein E(G), then we snall say the vertices v; and v, are adjacent and that the edge (v;,
V,) isincident on vertices v, and v,. The vertices adjacent to vertex 2in G, are 4, 5 and 1. The edges

incident on vertex 3in G, are (1,3), (3,6) and (3,7). If <v;,v,> isadirected edge, then vertex vy will be

said to be adjacent to v, while v, is adjacent from vy The edge <Vy V> isincident to v, and v,. In G3

the edgesincident to vertex 2 are <1,2>, <2,1> and <2,3>.
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Figure 6.3 Example of a multigraph that is not a graph.

A subgraph of G isagraph G' such that V(G') = V(G) and E(G") = E(G). Figure 6.4 shows some of the
subgraphs of G, and Ga.

A path from vertex v, to vertex vy in graph G is a sequence of vertices vy,Vi,Via, -..,Vin,Vg such that (v,
Vi1, (Viz.Vi2), - (VinVg) are edgesin E(G). If G' isdirected then the path consists of <v,vi1>,<v;,Vio>, ...,
VinVg>, €dgesin E(G). The length of a path is the number of edgeson it. A simple pathisapath in
which all vertices except possibly the first and last are distinct. A path such as (1,2) (2,4) (4,3) we write
as1,2,4,3. Paths 1,2,4,3 and 1,2,4,2 are both of length 3in G;. Thefirst isasimple path while the

second is not. 1,2,3 isasimple directed path in G3. 1,2,3,2 isnot a path in G; as the edge <3,2> isnot in
E(Gg). A cycleisasimple path in which the first and last vertices are the same. 1,2,3,1 isacyclein G;.
1,2,1isacyclein Gs. For the case of directed graphs we normally add on the prefix "directed" to the
terms cycle and path. In an undirected graph, G, two vertices v; and v, are said to be connected if there
isapathin G from v, to v, (since G is undirected, this means there must also be a path from v, to v;).
An undirected graph is said to be connected if for every pair of distinct verticesv;, v; in V(G) thereisa
path from v; to v; in G. Graphs G and G, are connected while G4 of figure 6.5 is not. A connected
component or simply a component of an undirected graph is amaximal connected subgraph. G4 has two
components H, and H, (see figure 6.5). A treeis a connected acyclic (i.e., has no cycles) graph . A
directed graph G is said to be strongly connected if for every pair of distinct verticesv;, v; in V(G) there
is adirected path from v; to v; and also from v to v;. The graph Gz is not strongly connected asthereis
no path from v5 to v,. A strongly connected component is a maximal subgraph that is strongly
connected. G5 has two strongly connected components.

[]

(a) Some of the subgraphs of G;

[]

(b) Some of the subgraphs of G3
Figure 6.4 (a) Subgraphs of G, and (b) Subgraphs of G

[]

Figure 6.5 A graph with two connected components.
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Figure 6.6 Strongly connected components of Gs.
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The degree of avertex isthe number of edgesincident to that vertex. The degree of vertex 1in G, is 3.

In case G is adirected graph, we define the in-degree of avertex v to be the number of edges for which v
is the head. The out-degree is defined to be the number of edges for which visthetail. Vertex 2 of G

has in-degree 1, out-degree 2 and degree 3. If d; is the degree of vertex i in agraph G with n vertices and
e edges, then it is easy to see that e = (1/2) D

In the remainder of this chapter we shall refer to a directed graph as adigraph. An undirected graph will
sometimes be referred to simply as a graph.

6.1.3 Graph Representations

While several representations for graphs are possible, we shall study only the three most commonly
used: adjacency matrices, adjacency lists and adjacency multilists. Once again, the choice of a particular
representation will depend upon the application one has in mind and the functions one expects to
perform on the graph.

Adjacency Matrix

Let G = (V,E) be agraph with n vertices, n = 1. The adjacency matrix of Gisa2-dimensional n = n
array, say A, with the property that A(i,j) = 1iff the edge (v;,v;) (<v;,v;> for adirected graph) isin E(G).
A(i,]) = Oif thereis no such edge in G. The adjacency matrices for the graphs G,, Gz and G, are shown
in figure 6.7. The adjacency matrix for an undirected graph is symmetric as the edge (v;,v;) isin E(G) iff
the edge (v;,v;) isaso in E(G). The adjacency matrix for a directed graph need not be symmetric (asis
the case for G3). The space needed to represent a graph using its adjacency matrix is n, bits. About half

this space can be saved in the case of undirected graphs by storing only the upper or lower triangle of the
matrix.

From the adjacency matrix, one may readily determine if there is an edge connecting any two verticesi

and j. For an undirected graph the degree of any vertex i isitsrow sum D A(i,}). For adirected graph
the row sum is the out-degree while the column sum is the in-degree. Suppose we want to answer a
nontrivial question about graphs such as: How many edges are there in G or is G connected. Using
adjacency matrices all algorithms will require at least O(n2) time as n? - n entries of the matrix (diagonal
entries are zero) have to be examined. When graphs are sparse, i.e., most of the termsin the adjacency
matrix are zero, one would expect that the former questions would be answerable in significantly less
time, say O(e + n) where e isthe number of edgesin G and e << n?/2. Such a speed up can be made
possible through the use of linked listsin which only the edgesthat are in G are represented. This leads
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to the next representation for graphs.

[]

Figure 6.7 Adjacency matrices for (i) G, (ii) Gz and (iii) G,.
Adjacency Lists

In this representation the n rows of the adjacency matrix are represented as n linked lists. Thereisone
list for each vertex in G. The nodesin list i represent the vertices that are adjacent from vertex i. Each
node has at least two fields: VERTEX and LINK. The VERTEX fields contain the indices of the vertices
adjacent to vertex i. The adjacency listsfor G;, Gz and G4 are shown in figure 6.8. Each list has a
headnode. The headnodes are sequential providing easy random access to the adjacency list for any
particular vertex. In the case of an undirected graph with n vertices and e edges, this representation
requires n head nodes and 2e list nodes. Each list node has 2 fields. In terms of the number of bits of
storage needed, this count should be multiplied by log n for the head nodes and log n + log e for the list
nodes as it takes O(log m) bits to represent a number of value m. Often one can sequentially pack the
nodes on the adjacency lists and eliminate the link fields.

[]

(i) Adjacency list for G,

[]

(if) Adjacency lists for Gj

[]

(iii) Adjacency list for G4
Figure 6.8 Adjacency Lists

The degree of any vertex in an undirected graph may be determined by just counting the number of
nodes in its adjacency list. The total number of edgesin G may, therefore, be determined in time O(n +
€). In the case of adigraph the number of list nodesis only e. The out-degree of any vertex may be
determined by counting the number of nodes on its adjacency list. The total number of edgesin G can,
therefore, be determined in O(n + €). Determining the in-degree of avertex isalittle more complex. In
case there is a need to repeatedly access all vertices adjacent to another vertex then it may be worth the
effort to keep another set of listsin addition to the adjacency lists. This set of lists, called inverse
adjacency lists, will contain one list for each vertex. Each list will contain a node for each vertex
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adjacent to the vertex it represents (figure 6.9). Alternatively, one could adopt a

[]

Figure 6.9 Inverse adjacency lists for Gs.

simplified version of the list structure used for sparse matrix representation in section 4.6. Each node
would now have four fields and would represent one edge. The node structure would be

[]

Figure 6.10 shows the resulting structure for the graph G3 . The headnodes are stored sequentially.

The nodes in the adjacency lists of figure 6.8 were ordered by the indices of the vertices they
represented. It is not necessary that lists be ordered in thisway and, in general, the vertices may appear
in any order. Thus, the adjacency lists of figure 6.11 would be just as valid a representation of G;.

Adjacency Multilists

In the adjacency list representation of an undirected graph each edge (v;,v)) is represented by two entries,
oneon thelist for v; and the

[]

Figure 6.10 Orthogonal List Representation for Gs.

[]

Figure 6.11 Alternate Form Adjacency List for G;.

other on the list for v;. As we shall see, in some situationsit is necessary to be able to determine the

second entry for a particular edge and mark that edge as aready having been examined. This can be
accomplished easily if the adjacency lists are actually maintained as multilists (i.e., lists in which nodes
may be shared among several lists). For each edge there will be exactly one node, but this node will be
intwo lists, i.e., the adjacency lists for each of the two nodesit isincident to. The node structure now
becomes where

[]

M isaone bit mark field that may be used to indicate whether or not the edge has been examined. The
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storage requirements are the same as for normal adjacency lists except for the addition of the mark bit
M. Figure 6.12 shows the adjacency multilists for G;. We shall study multilistsin greater detail in

Chapter 10.

Sometimes the edges of a graph have weights assigned to them. These weights may represent the
distance from one vertex to another or the

cost of going from one vertex to an adjacent vertex. In this case the adjacency matrix entries A(i,j) would
keep thisinformation, too. In the case of adjacency lists and multilists this weight information may be
kept in the list nodes by including an additional field. A graph with weighted edges is called a network.

[]

The |ists are: vertex 1: NlmNZDNS
vertex 2: NlDMDNS
vertex 3: NZDMDN6

vertex 4: N3 D N5 D N6

Figure 6.12 Adjacency Multilists for G;.

6.2 TRAVERSALS, CONNECTED COMPONENTS
AND SPANNING TREES

Given the root node of a binary tree, one of the most common things one wishes to do isto traverse the
tree and visit the nodes in some order. In the chapter on trees, we defined three ways (preorder, inorder,
and postorder) for doing this. An analogous problem arises in the case of graphs. Given an undirected
graph G = (V,E) and avertex vin V(G) we are interested in visiting all verticesin G that are reachable
fromv (i.e., all vertices connected to v). We shall look at two ways of doing this. Depth First Search and
Breadth First Search.

Depth First Search

Depth first search of an undirected graph proceeds as follows. The start vertex visvisited. Next an
unvisited vertex w adjacent to v is selected and a depth first search from w initiated. When avertex uis
reached such that all its adjacent vertices have been visited, we back up to the last vertex visited which
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has an unvisited vertex w adjacent to it and initiate a depth first seaerch from w. The search terminates
when no unvisited vertex can be reached from any of the visited one. This procedure is best described
recursively asin

procedure DFS(vV)

/1 Gven an undirected graph G= (V,E) with n vertices and an array

VI SITED(n) initially set to zero, this algorithmvisits all vertices

reachable fromv. G and VISITED are gl obal.//

VISITED (v) [ 11

for each vertex w adjacent to v do
if VISITED(w) = O then call DFS(w)
end

end DFS

In case G is represented by its adjacency lists then the vertices w adjacent to v can be determined by
following a chain of links. Since the algorithm DFS would examine each node in the adjacency lists at
most once and there are 2e list nodes, the time to complete the search is O(e). If G isrepresented by its
adjacency matrix, then the time to determine all vertices adjacent to v is O(n). Since at most n vertices
are visited, the total timeis O(n2).

The graph G of figure 6.13(a) is represented by its adjacency listsasin figure 6.13(b). If a depth first
search isinitiated from vertex vy, then the vertices of G are visited in the order: vy, Vo, Vg, Vg, Vs, Vg, V3,

v7. One may easily verify that DFS (vq) visitsall vertices connected to v;. So, all the vertices visited,
together with all edgesin G incident to these vertices form a connected component of G.

Breadth First Search

Starting at vertex v and marking it as visited, breadth first search differs from depth first search in that
al unvisited vertices adjacent to v are visited next. Then unvisited vertices adjacent to these vertices are
visited and so on. A breadth first search beginning at vertex v, of the graph in figure 6.13(a) wou